Solveeit Logo

Question

Question: If the median AD of triangle ABC divides the angle BAC in ratio 2 : 1, then \(\frac { \sin B } { \s...

If the median AD of triangle ABC divides the angle BAC in ratio 2 : 1, then sinBsinC\frac { \sin B } { \sin C } is equal to-

A

12\frac { 1 } { 2 }sec

B

12\frac { 1 } { 2 } cos

C

12\frac { 1 } { 2 } cosec A3\frac { \mathrm { A } } { 3 }

D

None

Answer

None

Explanation

Solution

Using sine rule is ∆ABD

sin2 A/3BD\frac { \sin 2 \mathrm {~A} / 3 } { \mathrm { BD } } = sinBAD\frac { \sin B } { A D } ............(i)

Using sine rule in ∆ABD

sinCAD\frac { \sin C } { A D } = ............(ii)

from (i) & (ii)

BDsinBsin2 A/3\frac { B D \sin B } { \sin 2 \mathrm {~A} / 3 } = CDsinCsinA/3\frac { C D \sin C } { \sin A / 3 }sinBsinC\frac { \sin B } { \sin C } = sin2 A/3sinA/3\frac { \sin 2 \mathrm {~A} / 3 } { \sin \mathrm { A } / 3 }

= 2 cos A/3