Solveeit Logo

Question

Question: If the median AD of a triangle ABC divided the angle \(\angle BAC\) in the ratio \(1:2\), then \(\df...

If the median AD of a triangle ABC divided the angle BAC\angle BAC in the ratio 1:21:2, then SinBSinC\dfrac{{\operatorname{Sin} B}}{{\operatorname{Sin} C}}is equal to
A.2cosA32\cos \dfrac{A}{3}
B.12secA3\dfrac{1}{2}\sec \dfrac{A}{3}
C.12sinA3\dfrac{1}{2}\sin \dfrac{A}{3}
D.2cosecA32\operatorname{cosec} \dfrac{A}{3}

Explanation

Solution

In order to find the value of SinBSinC\dfrac{{\operatorname{Sin} B}}{{\operatorname{Sin} C}}, first find the angles BAD\angle BAD and DAC\angle DAC using the ratio of 1:21:2 in which BAC\angle BAC was divided. Then using the sine rule of the triangle, find the value of Sin B and Sin C, divide them, solve using the properties of trigonometry and get the results.
Formula used:
sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
1cosx=secx\dfrac{1}{{\cos x}} = \sec x

Complete answer:
Considering a triangle to be ABC, with median AD and sides as a, b and c. The diagram according to that is:

Since, BAC\angle BAC divides the angle A into ratio 1:21:2. According to the ratio, let the angle be x and 2x.
So, the equation becomes:
x+2x=Ax + 2x = \angle A
3x=A\Rightarrow 3x = \angle A
Dividing both sides by 33:
3x3=A3\Rightarrow \dfrac{{3x}}{3} = \dfrac{{\angle A}}{3}
x=A3\Rightarrow x = \dfrac{{\angle A}}{3}
So, the angle becomes:
BAD=A3\angle BAD = \dfrac{{\angle A}}{3}
and
DAC=2.A3=2A3\angle DAC = 2.\dfrac{{\angle A}}{3} = \dfrac{{2\angle A}}{3}.
Now, the figure becomes:

In Triangle ABD:
Using Sine Rule, we can write it as:
ADBD=sinBsinA3\Rightarrow \dfrac{{AD}}{{BD}} = \dfrac{{\sin B}}{{\sin \dfrac{A}{3}}}
Writing the above equation in form of Sin B, we get:
sinB=ADBDsinA3\Rightarrow \sin B = \dfrac{{AD}}{{BD}}\sin \dfrac{A}{3} …….(1)
Now, In Triangle ACD:
Using Sine Rule, we can write it as:
ADDC=sinCsin2A3\Rightarrow \dfrac{{AD}}{{DC}} = \dfrac{{\sin C}}{{\sin \dfrac{{2A}}{3}}}
Writing the above equation in form of Sin C, we get:
sinC=ADDCsin2A3\Rightarrow \sin C = \dfrac{{AD}}{{DC}}\sin \dfrac{{2A}}{3} …….(2)
Since, we need to find the value of SinBSinC\dfrac{{\operatorname{Sin} B}}{{\operatorname{Sin} C}}, so dividing the equation 1 by equation 2 and, we get:
sinBsinC=ADBDsinA3ADDCsin2A3\Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{{\dfrac{{AD}}{{BD}}\sin \dfrac{A}{3}}}{{\dfrac{{AD}}{{DC}}\sin \dfrac{{2A}}{3}}}
Cancelling the common terms on the right side, we get:
sinBsinC=DCsinA3BDsin2A3\Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{{DC\sin \dfrac{A}{3}}}{{BD\sin \dfrac{{2A}}{3}}}
Since, AD is the median and median divides the line BC into two, equal parts. So, BD=DCBD = DC.
That gives:
sinBsinC=sinA3sin2A3\Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{{\sin \dfrac{A}{3}}}{{\sin \dfrac{{2A}}{3}}} ……(3)
From sub-angles, we know that:
sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
So, we can write:
sin2A3=2sinA3cosA3\sin 2\dfrac{A}{3} = 2\sin \dfrac{A}{3}\cos \dfrac{A}{3}
Substituting this equation in equation 3, we get:
sinBsinC=sinA32sinA3cosA3\Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{{\sin \dfrac{A}{3}}}{{2\sin \dfrac{A}{3}\cos \dfrac{A}{3}}}
Cancelling the common terms:
sinBsinC=12cosA3\Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{1}{{2\cos \dfrac{A}{3}}} ……(4)
Since, we know that 1cosx=secx\dfrac{1}{{\cos x}} = \sec x, so we can write 1cosA3=secA3\dfrac{1}{{\cos \dfrac{A}{3}}} = \sec \dfrac{A}{3}.
Substituting it in the above equation 4, we get:
sinBsinC=12secA3\Rightarrow \dfrac{{\sin B}}{{\sin C}} = \dfrac{1}{2}\sec \dfrac{A}{3}.
Hence, the value of SinBSinC\dfrac{{\operatorname{Sin} B}}{{\operatorname{Sin} C}}is equal to 12secA3\dfrac{1}{2}\sec \dfrac{A}{3}.
Therefore, Option B is correct.

Note:
The Sine Rule of a triangle basically represents the relation between the sides of the triangle and the angles of the triangle that is just opposite of the side (not-right angled).
It’s important to draw a figure of the triangle, in order to have a clear view of the sides and the angles.