Solveeit Logo

Question

Physics Question on Newtons Laws of Motion

If the measurement errors in all the independent quantities are known, then it is possible to determine the error in any dependent quantity. This is done by the use of series expansion and truncating the expansion at the first power of the error. For example, consider the relation z=x/yz = x/y. If the errors in x,yx ,y and zz are Δx,Δy\Delta x, \Delta y and Δz\Delta z, respectively, then z±Δz=x±Δxy±Δy=xy(1±Δxx)(1±Δyy)1z \pm \Delta z = \frac{x \pm \Delta x}{y \pm \Delta y} = \frac{x}{y} \left( 1 \pm \frac{\Delta x}{x} \right) \left( 1 \pm \frac{\Delta y}{y} \right)^{-1}. The series expansion for (1±Δyy)1\left( 1 \pm \frac{\Delta y}{y} \right)^{-1}, to first power in Δy/y\Delta y/y . is 1(Δy/y)1 \mp (\Delta y / y ). The relative errors in independent variables are always added. So the error in zz will be Δz=z(Δxx+Δyy)\Delta z = z \left( \frac{\Delta x}{x} + \frac{\Delta y}{y} \right) . The above derivation makes the assumption that Δpowersofthesequantitiesareneglected.Considertheratio\Delta powers of these quantities are neglected. Consider the ratio r = \frac{(1-a)}{(1+a)}tobedeterminedbymeasuringadimensionlessquantityto be determined by measuring a dimensionless quantitya.Iftheerrorinthemeasurementof. If the error in the measurement of aisis\Delta a (\Delta a/a ??1),thenwhatistheerror, then what is the error\Delta rindeterminingin determiningr$?

A

Δa(1+a)2\frac{\Delta a}{(1 +a)^2}

B

2Δa(1+a)2\frac{ 2 \Delta a}{(1 +a)^2}

C

2Δa(1a2)\frac{2 \Delta a}{(1 - a^2)}

D

2aΔa(1a2)\frac{2 a \Delta a}{(1 - a^2)}

Answer

2Δa(1+a)2\frac{ 2 \Delta a}{(1 +a)^2}

Explanation

Solution

r=(1a1+a)r =\left(\frac{1-a}{1+a}\right) Δrr=Δ(1a)(1a)+Δ(1+a)(1+a)\frac{\Delta r}{r} = \frac{\Delta \left(1-a\right)}{\left(1-a\right)} + \frac{\Delta \left(1+a\right)}{\left(1+a\right)} =Δa(1a)+Δa(1+a)= \frac{\Delta a}{\left(1-a\right)} + \frac{\Delta a}{\left(1+a\right)} =Δa(1+a+1a)(1a)(1+a)= \frac{\Delta a \left(1+a + 1-a\right)}{\left(1-a\right)\left(1+a\right)} Δr=2Δa(1a)(1+a)(1a)(1+a)=2Δa(1+a)2\therefore \Delta r = \frac{2\Delta a}{\left(1-a\right)\left(1+a\right)} \frac{\left(1-a\right)}{\left(1+a\right)} = \frac{2\Delta a}{\left(1+a\right)^{2}}