Solveeit Logo

Question

Question: If the mean of the set of numbers \(x_{1},x_{2},x_{3},.....,x_{n}\) is \(\bar{x}\), then the mean of...

If the mean of the set of numbers x1,x2,x3,.....,xnx_{1},x_{2},x_{3},.....,x_{n} is xˉ\bar{x}, then the mean of the numbers xi+2ix_{i} + 2i, 1in1 \leq i \leq n is

A

xˉ+2n\bar{x} + 2n

B

xˉ+n+1\bar{x} + n + 1

C

xˉ+2\bar{x} + 2

D

xˉ+n\bar{x} + n

Answer

xˉ+n+1\bar{x} + n + 1

Explanation

Solution

We know that xˉ=i=1nxin\bar{x} = \frac{\sum_{i = 1}^{n}x_{i}}{n} i.e., i=1nxi=nxˉ\sum_{i = 1}^{n}x_{i} = n\bar{x}

i=1n(xi+2i)n=i=1nxi+2i=1nin=nxˉ+2(1+2+...n)n=nxˉ+2n(n+1)2n=xˉ+(n+1)\frac{\sum_{i = 1}^{n}{(x_{i} + 2i)}}{n} = \frac{\sum_{i = 1}^{n}x_{i} + 2\sum_{i = 1}^{n}i}{n} = \frac{n\bar{x} + 2(1 + 2 + ...n)}{n} = \frac{n\bar{x} + 2\frac{n(n + 1)}{2}}{n} = \bar{x} + (n + 1)