Question
Mathematics Question on Probability and Statistics
If the mean of the following probability distribution of a random variable X: \begin{array}{|c|c|c|c|c|c|} \hline X & 0 & 2 & 4 & 6 & 8 \\\ \hline P(X) & a & 2a & a+b & 2b & 3b \\\ \hline \end{array} is 946, then the variance of the distribution is:
81581
81566
27173
27151
81566
Solution
1. From the given probability distribution, the total probability must equal 1:
∑Pi=1⟹a+2a+a+b+2b+3b=1.
Simplify:
4a+6b=1⋯(I)
2. The mean is given by:
E(X)=∑PiXi=946.
Substitute the probabilities:
E(X)=0×a+2×2a+4×(a+b)+6×2b+8×3b.
Simplify:
4a+4b+12b+24b=946,
8a+40b=946⋯(II).
3. Solve equations (I) and (II) simultaneously: From (I): b=91−32a. Substitute b=91 and solve to find:
a=121,b=91.
4. Variance is calculated as:
Variance=E(X2)−(E(X))2.
Step 1: Find E(X2):
E(X2)=∑PiXi2=02×a+22×2a+42×(a+b)+62×2b+82×3b.
Simplify:
E(X2)=4a+16(a+b)+72b+192b.
Substitute a=121,b=91:
E(X2)=9298.
Step 2: Find (E(X))2:
(E(X))2=(946)2=812116.
Step 3: Calculate variance:
Variance=9298−812116=81566.