Solveeit Logo

Question

Mathematics Question on Probability and Statistics

If the mean of the following probability distribution of a random variable XX: \begin{array}{|c|c|c|c|c|c|} \hline X & 0 & 2 & 4 & 6 & 8 \\\ \hline P(X) & a & 2a & a+b & 2b & 3b \\\ \hline \end{array} is 469\frac{46}{9}, then the variance of the distribution is:

A

58181\frac{581}{81}

B

56681\frac{566}{81}

C

17327\frac{173}{27}

D

15127\frac{151}{27}

Answer

56681\frac{566}{81}

Explanation

Solution

1. From the given probability distribution, the total probability must equal 1:

Pi=1    a+2a+a+b+2b+3b=1.\sum P_i = 1 \implies a + 2a + a + b + 2b + 3b = 1.

Simplify:

4a+6b=1(I)4a + 6b = 1 \quad \cdots \text{(I)}

2. The mean is given by:

E(X)=PiXi=469.E(X) = \sum P_i X_i = \frac{46}{9}.

Substitute the probabilities:

E(X)=0×a+2×2a+4×(a+b)+6×2b+8×3b.E(X) = 0 \times a + 2 \times 2a + 4 \times (a + b) + 6 \times 2b + 8 \times 3b.

Simplify:

4a+4b+12b+24b=469,4a + 4b + 12b + 24b = \frac{46}{9},

8a+40b=469(II).8a + 40b = \frac{46}{9} \quad \cdots \text{(II)}.

3. Solve equations (I) and (II) simultaneously: From (I): b=192a3b = \frac{1}{9} - \frac{2a}{3}. Substitute b=19b = \frac{1}{9} and solve to find:

a=112,b=19.a = \frac{1}{12}, \quad b = \frac{1}{9}.

4. Variance is calculated as:

Variance=E(X2)(E(X))2.\text{Variance} = E(X^2) - (E(X))^2.

Step 1: Find E(X2)E(X^2):

E(X2)=PiXi2=02×a+22×2a+42×(a+b)+62×2b+82×3b.E(X^2) = \sum P_i X_i^2 = 0^2 \times a + 2^2 \times 2a + 4^2 \times (a + b) + 6^2 \times 2b + 8^2 \times 3b.

Simplify:

E(X2)=4a+16(a+b)+72b+192b.E(X^2) = 4a + 16(a + b) + 72b + 192b.

Substitute a=112,b=19a = \frac{1}{12}, b = \frac{1}{9}:

E(X2)=2989.E(X^2) = \frac{298}{9}.

Step 2: Find (E(X))2(E(X))^2:

(E(X))2=(469)2=211681.(E(X))^2 = \left(\frac{46}{9}\right)^2 = \frac{2116}{81}.

Step 3: Calculate variance:

Variance=2989211681=56681.\text{Variance} = \frac{298}{9} - \frac{2116}{81} = \frac{566}{81}.