Solveeit Logo

Question

Question: If the mean of the data : \(7,8,9,7,8,7,\lambda ,8\) is 8, then the variance of this data is A. \(...

If the mean of the data : 7,8,9,7,8,7,λ,87,8,9,7,8,7,\lambda ,8 is 8, then the variance of this data is
A. 98\dfrac{9}{8}
B. 22
C. 78\dfrac{7}{8}
D. 11

Explanation

Solution

In this question, first use the formula of mean to find the value of λ\lambda . Now, use the elements to find the value of variance, which is variance = xi2Nμ2\dfrac{\sum {{x}_{i}}^{2}}{N}-{{\mu }^{2}}.

Complete step-by-step solution:
Here, the given data is 7,8,9,7,8,7,λ,87,8,9,7,8,7,\lambda ,8. The mean of the given data is 8. We have to find the variance of the given data. We have, the mean (μ)=8\left( \mu \right)=8, and the number of elements (N)=8\left( N \right)=8. Let us first use the basic principle of mean (μ)\left( \mu \right) and find the value of λ\lambda . We know that mean is given by,
Mean (μ)=x1+x2+x3+x4+x5+x6+x7+x88\left( \mu \right)=\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}+{{x}_{5}}+{{x}_{6}}+{{x}_{7}}+{{x}_{8}}}{8}
The above mean expression is for 8 elements, which is,
Mean = (sum of elements)(total number of elements)=xiN\dfrac{\left( \text{sum of elements} \right)}{\left( \text{total number of elements} \right)}=\dfrac{\sum {{x}_{i}}}{N}
So, we get the mean as,
μ=7+8+9+7+8+7+λ+88 8=15+16+15+8+λ8 8×8=15+16+15+8+λ 64=30+24+λ 64=54+λ λ=6454 λ=10 \begin{aligned} & \mu =\dfrac{7+8+9+7+8+7+\lambda +8}{8} \\\ & \Rightarrow 8=\dfrac{15+16+15+8+\lambda }{8} \\\ & \Rightarrow 8\times 8=15+16+15+8+\lambda \\\ & \Rightarrow 64=30+24+\lambda \\\ & \Rightarrow 64=54+\lambda \\\ & \Rightarrow \lambda =64-54 \\\ & \Rightarrow \lambda =10 \\\ \end{aligned}
So, here we have the values of λ=10\lambda =10, therefore, we have the elements as, 7, 8, 9, 7, 8, 7, 10, 8. We know that variance =xi2Nμ2\dfrac{\sum {{x}_{i}}^{2}}{N}-{{\mu }^{2}} . So, let us first find xi2\sum {{x}_{i}}^{2} by squaring each element and adding them with each other. So, we will get,
x12=72=49,x22=64,x32=81,x42=49,x52=64,x62=49,x72=100,x82=64{{x}_{1}}^{2}={{7}^{2}}=49,{{x}_{2}}^{2}=64,{{x}_{3}}^{2}=81,{{x}_{4}}^{2}=49,{{x}_{5}}^{2}=64,{{x}_{6}}^{2}=49,{{x}_{7}}^{2}=100,{{x}_{8}}^{2}=64
We also need to find μ2{{\mu }^{2}}, which will be, μ2=82=64{{\mu }^{2}}={{8}^{2}}=64. Now let us add all these values to find xi2\sum {{x}_{i}}^{2}. So, we get,
xi2=x12+x22+x32+x42+x52+x62+x72+x82 xi2=49+64+81+49+64+49+100+64 xi2=520 \begin{aligned} & \sum {{x}_{i}}^{2}={{x}_{1}}^{2}+{{x}_{2}}^{2}+{{x}_{3}}^{2}+{{x}_{4}}^{2}+{{x}_{5}}^{2}+{{x}_{6}}^{2}+{{x}_{7}}^{2}+{{x}_{8}}^{2} \\\ & \Rightarrow \sum {{x}_{i}}^{2}=49+64+81+49+64+49+100+64 \\\ & \Rightarrow \sum {{x}_{i}}^{2}=520 \\\ \end{aligned}
Now, we have xi2=520\sum {{x}_{i}}^{2}=520, N=8N=8 and μ2=64{{\mu }^{2}}=64, so let us substitute these values in the variance formula and calculate the required result. So, we have,
xi2Nμ2 =520864 =6564=1 \begin{aligned} & \dfrac{\sum {{x}_{i}}^{2}}{N}-{{\mu }^{2}} \\\ & =\dfrac{520}{8}-64 \\\ & =65-64=1 \\\ \end{aligned}
Therefore, we get the variance of the given data as 1.
Hence, the correct answer is option D.

Note: Here, we can also use the formula of variance as (xiμ)2N\dfrac{\sum {{\left( {{x}_{i}}-\mu \right)}^{2}}}{N}. Variance is denoted by (σ2)\left( {{\sigma }^{2}} \right), the square root of variance is known as standard deviation. For using this formula first we will have to find the value of (xiμ)\left( {{x}_{i}}-\mu \right) for each element and then have to square of those term which would take much more time so we avoid using this formula.