Solveeit Logo

Question

Mathematics Question on Statistics

If the mean of n observations 12,22,32....,n21^2, 2^2, 3^2....,n^2 is 46n11\frac{46n}{11} , then n is equal to

A

11

B

12

C

23

D

22

Answer

11

Explanation

Solution

Mean of n observations is 12+22+32+....n2n=n(n+1)(2n+1)6n {\frac{1^2 + 2^2 + 3^2 + .... n^2}{n} = \frac{n(n + 1)(2n + 1)}{6n}} From the description of the problem: (n+1)(2n+1)6=46n11{\frac{(n + 1)(2n +1)}{6} =\frac{46n}{11}} 11×(2n2+3n+1)=6×46n\Rightarrow \:\:\: {11 \times (2n^{2} + 3n + 1) = 6 \times 46 n} 22n2+33n+11=276n\Rightarrow \:\:\: { 22n^{2} + 33 n + 11 = 276 n} 22n2+243n+11=0\Rightarrow \:\:\: { 22n^{2} + 243 n + 11 = 0} 22n2+242nn+11=0\Rightarrow \:\:\: { 22n^{2} + 242 n - n + 11 = 0} 22n(n11)1(n11)=0\Rightarrow \:\:\: { 22n(n - 11 ) - 1 (n -11) = 0} (n11)(22n1)=0\Rightarrow \:\:\: {(n - 11) (22n - 1) = 0} Now, 22n1=0 {22n - 1 = 0} n=122\Rightarrow \:\: { n = \frac{1}{22} } which is discarded as n cannot be a fraction n11=0\therefore \:\: { n - 11 = 0} n=11\Rightarrow \:\: { n = 11}