Solveeit Logo

Question

Mathematics Question on Statistics

If the mean deviation of the numbers 1, 1 + d, 1 + 2d, .... 1 + 100d from their mean is 255, then d is equal to :

A

20

B

10.1

C

20.2

D

10

Answer

10.1

Explanation

Solution

Mean = 101+d(1+2+3+....+100)101\frac{101 + d(1 + 2 + 3 + .... + 100)}{101} =1+d×100×101101×2=1+50d = 1 + \frac{d \times 100 \times 101}{101 \times 2} = 1 + 50 d \because Mean deviation from the mean = 255 1101[1(1+50d)+(1+d)(1+50d)\Rightarrow \frac{1}{101} [\left|1- \left(1+ 50d\right)\right| + \left|\left(1+d\right) - \left(1+50d\right)\right| +(1+2d)(1+50d)+...+(1+100d)(1+50d)]=255+ \left|\left(1+2d\right) - \left(1+50d\right)\right| + ... +\left|\left(1+100d\right) - \left(1+50d\right)\right|] = 255 2d[1+2+3+....+50]=101×255 \Rightarrow 2d \left[ 1 + 2 + 3 + ....+50\right] = 101 \times255 2d×50×512=101×255 \Rightarrow 2d \times \frac{50 \times51}{2} = 101 \times 255 d=101×25550×51=10.1\Rightarrow d = \frac{101 \times255}{50 \times51} = 10.1