Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

If the mean and variance of five observations are 245\frac{24}{5} and 19425\frac{194}{25} respectively and the mean of first four observations is 72\frac{7}{2}, then the variance of the first four observations is equal to

A

45\frac{4}{5}

B

7712\frac{77}{12}

C

54\frac{5}{4}

D

1054\frac{105}{4}

Answer

54\frac{5}{4}

Explanation

Solution

Solution: Let the first four observations be x1,x2,x3,x4x_1, x_2, x_3, x_4.

Step 1. Given:
Xˉ=245,σ2=19425\bar{X} = \frac{24}{5}, \quad \sigma^2 = \frac{194}{25}
Step 2. The mean of five observations:

x1+x2+x3+x4+x55=245    x1+x2+x3+x4+x5=24\frac{x_1 + x_2 + x_3 + x_4 + x_5}{5} = \frac{24}{5} \implies x_1 + x_2 + x_3 + x_4 + x_5 = 24
Step 3. The mean of the first four observations:

x1+x2+x3+x44=72    x1+x2+x3+x4=14\frac{x_1 + x_2 + x_3 + x_4}{4} = \frac{7}{2} \implies x_1 + x_2 + x_3 + x_4 = 14

Step 4. Subtracting (2) from (1):
x5=2414=10x_5 = 24 - 14 = 10
Step 5. Using the formula for variance of the first four observations:
Variance=(xixˉ)2n,where xˉ=72\text{Variance} = \frac{\sum (x_i - \bar{x})^2}{n}, \quad \text{where } \bar{x} = \frac{7}{2}
After calculating, the variance is: 54\frac{5}{4}

The Correct Answer is:54\frac{5}{4}