Solveeit Logo

Question

Mathematics Question on Probability

If the mean and the variance of a binomial variate XX are 22 and 11 respectively, then the probability that XX takes a value greater than or equal to one is :

A

116\frac{1}{16}

B

916\frac{9}{16}

C

34\frac{3}{4}

D

1516\frac{15}{16}

Answer

1516\frac{15}{16}

Explanation

Solution

In binomial distribution mean =np=2=n p=2 and
variance npq=1n p q=1
2q=1\Rightarrow 2 q=1
q=12\Rightarrow q=\frac{1}{2}
p=1q=12\Rightarrow p=1-q=\frac{1}{2}
n=4\Rightarrow n=4
P(x1)=1nC0P0(q)n\therefore P(x \geq 1)=1-{ }^{n} C_{0} P^{0}(q)^{n}
=14C0(12)0(12)4=1-{ }^{4} C_{0}\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{4}
=1116=156=1-\frac{1}{16}=\frac{15}{6}