Solveeit Logo

Question

Mathematics Question on inequalities

If the maximum value of the term independent of t in the expansion of (t2x15^{\frac{1}{5}}+(1x)110t\frac{(1−x)^{\frac{1}{10}}}{t}),x≥0 is K , then 8 K is equal to__________.

Answer

General Term
=15Cr(t2x15t^2x^{\frac{1}{5}})15−r((1x)110t\frac{(1−x)^{\frac{1}{10}}}{t})r
for term independent on t
2(15 – r) – r = 0
r = 10
T 11 = 15 C 10 x(1 – x)
Maximum value of x (1 – x) occur at
x=12\frac{1}{2}
i.e.,(15(1−x))max=14\frac{1}{4}
⇒K=15C10×14\frac{1}{4}
⇒8K=2(15C10)=6006