Solveeit Logo

Question

Mathematics Question on Ellipse

If the maximum distance of normal to the ellipse x24+y2b2=1,b<2\frac{x^2}{4}+\frac{y^2}{b^2}=1, b<2, from the origin is 1 , then the eccentricity of the ellipse is

A

34\frac{\sqrt{3}}{4}

B

32\frac{\sqrt{3}}{2}

C

12\frac{1}{\sqrt{2}}

D

12\frac{1}{2}

Answer

32\frac{\sqrt{3}}{2}

Explanation

Solution

Equation of normal is
2xsecθ− by cosecθ=4−b2
Distance from (0,0)=4sec2θ+b2cosec2θ​4−b2​
Distance is maximum if
4sec2θ+b2cosec2θ is minimum
⇒tan2θ=2b​
⇒4⋅2b+2​+b2⋅bb+2​​4−b2​=1
⇒4−b2=b+2⇒b=1⇒e=23​​