Solveeit Logo

Question

Question: If the matrix \(\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & - \gamma \\ \alpha & - \beta...

If the matrix [02βγαβγαβγ]\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & - \gamma \\ \alpha & - \beta & \gamma \end{bmatrix}is orthogonal, then –

A

a = ±12\frac{1}{\sqrt{2}}

B

b = ±16\frac{1}{\sqrt{6}}

C

g = ± 13\frac{1}{\sqrt{3}}

D

all of these

Answer

all of these

Explanation

Solution

Let A = [02βγαβγαβγ]\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & - \gamma \\ \alpha & - \beta & \gamma \end{bmatrix}, A¢ = [0αα2βββγγγ]\begin{bmatrix} 0 & \alpha & \alpha \\ 2\beta & \beta & - \beta \\ \gamma & - \gamma & \gamma \end{bmatrix}

Since A is orthogonal, \ AA¢ = I

Ž[02βγαβγαβγ]\left[ \begin{array} { c c c } 0 & 2 \beta & \gamma \\ \alpha & \beta & - \gamma \\ \alpha & - \beta & \gamma \end{array} \right] [0αα2βββγγγ]\begin{bmatrix} 0 & \alpha & \alpha \\ 2\beta & \beta & - \beta \\ \gamma & - \gamma & \gamma \end{bmatrix}=[100010001]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}

Ž $\begin{bmatrix} 4\beta^{2} + \gamma^{2} & 2\beta^{2} - \gamma^{2} & - 2\beta^{2} + \gamma^{2} \ 2\beta^{2} - \gamma^{2} & \alpha^{2} + \beta^{2} + \gamma^{2} & \alpha^{2} - \beta^{2} - \gamma^{2} \

  • 2\beta^{2} + \gamma^{2} & \alpha^{2} - \beta^{2} - \gamma^{2} & \alpha^{2} + \beta^{2} + \gamma^{2} \end{bmatrix}$

= [100010001]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}

Equation the corresponding elements, we have

 4β2+γ2=12β2γ2=0}\left. \ \begin{matrix} 4\beta^{2} + \gamma^{2} = 1 \\ 2\beta^{2} - \gamma^{2} = 0 \end{matrix} \right\}Ž b = ± 16\frac{1}{\sqrt{6}}, g = ± 13\frac{1}{\sqrt{3}}

a2 + b2 + g2 = 1 Ž a2 +16\frac{1}{6}+13\frac{1}{3}= 1 Ž a = ±12\frac{1}{\sqrt{2}}.

Hence (4) is correct answer.