Question
Question: If the matrix \(\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & - \gamma \\ \alpha & - \beta...
If the matrix 0αα2ββ−βγ−γγis orthogonal, then –
A
a = ±21
B
b = ±61
C
g = ± 31
D
all of these
Answer
all of these
Explanation
Solution
Let A = 0αα2ββ−βγ−γγ, A¢ = 02βγαβ−γα−βγ
Since A is orthogonal, \ AA¢ = I
Ž0αα2ββ−βγ−γγ 02βγαβ−γα−βγ=100010001
Ž $\begin{bmatrix} 4\beta^{2} + \gamma^{2} & 2\beta^{2} - \gamma^{2} & - 2\beta^{2} + \gamma^{2} \ 2\beta^{2} - \gamma^{2} & \alpha^{2} + \beta^{2} + \gamma^{2} & \alpha^{2} - \beta^{2} - \gamma^{2} \
- 2\beta^{2} + \gamma^{2} & \alpha^{2} - \beta^{2} - \gamma^{2} & \alpha^{2} + \beta^{2} + \gamma^{2} \end{bmatrix}$
= 100010001
Equation the corresponding elements, we have
4β2+γ2=12β2−γ2=0}Ž b = ± 61, g = ± 31
a2 + b2 + g2 = 1 Ž a2 +61+31= 1 Ž a = ±21.
Hence (4) is correct answer.