Solveeit Logo

Question

Question: If the matrix \(\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & - \gamma \\ \alpha & - \beta...

If the matrix [02βγαβγαβγ]\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & - \gamma \\ \alpha & - \beta & \gamma \end{bmatrix} is orthogonal, then

A

a = ±12\frac{1}{\sqrt{2}}

B

b = ± 16\frac{1}{\sqrt{6}}

C

g = ± 13\frac{1}{\sqrt{3}}

D

All of these

Answer

All of these

Explanation

Solution

since A is orthogonal,

AA´ = I

$\begin{bmatrix} 4\beta^{2} + \gamma^{2} & 2\beta^{2} - \gamma^{2} & - 2\beta^{2} + \gamma^{2} \ 2\beta^{2} - \gamma^{2} & \alpha^{2} + \beta^{2} + \gamma^{2} & \alpha^{2} - \beta^{2} - \gamma^{2} \

  • 2\beta^{2} + \gamma^{2} & \alpha^{2} - \beta^{2} - \gamma^{2} & \alpha^{2} + \beta^{2} + \gamma^{2} \end{bmatrix}==\begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$

\ a = ± 12\frac{1}{\sqrt{2}}, b = ± 16\frac{1}{\sqrt{6}}, g = ± 13\frac{1}{\sqrt{3}}