Question
Question: If the matrix \(\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & - \gamma \\ \alpha & - \beta...
If the matrix 0αα2ββ−βγ−γγ is orthogonal, then
A
a = ±21
B
b = ± 61
C
g = ± 31
D
All of these
Answer
All of these
Explanation
Solution
since A is orthogonal,
AA´ = I
$\begin{bmatrix} 4\beta^{2} + \gamma^{2} & 2\beta^{2} - \gamma^{2} & - 2\beta^{2} + \gamma^{2} \ 2\beta^{2} - \gamma^{2} & \alpha^{2} + \beta^{2} + \gamma^{2} & \alpha^{2} - \beta^{2} - \gamma^{2} \
- 2\beta^{2} + \gamma^{2} & \alpha^{2} - \beta^{2} - \gamma^{2} & \alpha^{2} + \beta^{2} + \gamma^{2} \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$
\ a = ± 21, b = ± 61, g = ± 31