Solveeit Logo

Question

Question: If the matrix B given as \(B=\left[ \begin{matrix} 5 & 2\alpha & 1 \\\ 0 & 2 & 1 \\\ ...

If the matrix B given as B=[52α1 021 α31 ]B=\left[ \begin{matrix} 5 & 2\alpha & 1 \\\ 0 & 2 & 1 \\\ \alpha & 3 & -1 \\\ \end{matrix} \right] is the inverse of a 3×33\times 3 matrix A, then the sum of all values of α\alpha for which det(A)+1=0\det \left( A \right)+1=0, is?
(A)0 (B)2 (C)1 (D)1 \begin{aligned} & \left( A \right)0 \\\ & \left( B \right)2 \\\ & \left( C \right)1 \\\ & \left( D \right)-1 \\\ \end{aligned}

Explanation

Solution

We solve this problem finding the relation between the determinant of A and determinant of B using the formula AB=AB\left| AB \right|=\left| A \right|\left| B \right|. Then we find the determinant of B and substitute in the relation obtained to find the determinant of A. Then we substitute the determinant of A value in det(A)+1=0\det \left( A \right)+1=0 and find the values of α\alpha and then we find the sum of those values.

Complete step-by-step answer :
Two matrices A and B are said to be inverse of each other, if AB=BA=IAB=BA=I

We are given that matrix B is B=[52α1 021 α31 ]B=\left[ \begin{matrix} 5 & 2\alpha & 1 \\\ 0 & 2 & 1 \\\ \alpha & 3 & -1 \\\ \end{matrix} \right] and it is inverse of matrix A.
As, A and B are inverses of each other we can write it as,
AB=I...........(1)\Rightarrow AB=I...........\left( 1 \right)
Let us consider the property of determinants. Determinant of product of matrices is equal to the product of determinant of matrices.
AB=AB\left| AB \right|=\left| A \right|\left| B \right|
Now let us apply determinant to the above equation (1). Then we get,
AB=I AB=1 A=1B \begin{aligned} & \Rightarrow \left| AB \right|=\left| I \right| \\\ & \Rightarrow \left| A \right|\left| B \right|=1 \\\ & \Rightarrow \left| A \right|=\dfrac{1}{\left| B \right|} \\\ \end{aligned}
So, we get that det(A)=1det(B)\det \left( A \right)=\dfrac{1}{\det \left( B \right)}.
Now, let us find the determinant of matrix B.

& \left| B \right|=\left| \begin{matrix} 5 & 2\alpha & 1 \\\ 0 & 2 & 1 \\\ \alpha & 3 & -1 \\\ \end{matrix} \right| \\\ & \left| B \right|=5\left| \begin{matrix} 2 & 1 \\\ 3 & -1 \\\ \end{matrix} \right|-2\alpha \left| \begin{matrix} 0 & 1 \\\ \alpha & -1 \\\ \end{matrix} \right|+\left| \begin{matrix} 0 & 2 \\\ \alpha & 3 \\\ \end{matrix} \right| \\\ & \left| B \right|=5\left( -2-3 \right)-2\alpha \left( 0-\alpha \right)+\left( 0-2\alpha \right) \\\ & \left| B \right|=5\left( -5 \right)-2\alpha \left( -\alpha \right)+\left( -2\alpha \right) \\\ & \left| B \right|=-25+2{{\alpha }^{2}}-2\alpha \\\ \end{aligned}$$ As $\det \left( A \right)=\dfrac{1}{\det \left( B \right)}$, let us now calculate the value of determinant of A. Then we get $\det \left( A \right)=\dfrac{1}{\det \left( B \right)}=\dfrac{1}{2{{\alpha }^{2}}-2\alpha -25}$ Now let us consider $\det \left( A \right)+1=0$. $\begin{aligned} & \Rightarrow \dfrac{1}{2{{\alpha }^{2}}-2\alpha -25}+1=0 \\\ & \Rightarrow \dfrac{1+2{{\alpha }^{2}}-2\alpha -25}{2{{\alpha }^{2}}-2\alpha -25}=0 \\\ & \Rightarrow 2{{\alpha }^{2}}-2\alpha -24=0 \\\ & \Rightarrow 2\left( {{\alpha }^{2}}-\alpha -12 \right)=0 \\\ & \Rightarrow {{\alpha }^{2}}-\alpha -12=0 \\\ & \Rightarrow \left( \alpha -4 \right)\left( \alpha +3 \right)=0 \\\ & \Rightarrow \alpha =4,-3 \\\ \end{aligned}$ So, the possible values of $\alpha $ for which $\det \left( A \right)+1=0$ are -3 and 4. So, sum of the possible values of $\alpha $ for which $\det \left( A \right)+1=0$ is $\Rightarrow 4+\left( -3 \right)=1$ Hence the answer is 1. **Therefore, the answer is Option C.** **Note** :There is a possibility of making a mistake while solving this problem by taking the determinant of matrix A equal to the determinant of matrix B when they are inverse to each other. After obtaining the quadratic equation, we can also use the quadratic formula to find the possible values of $\alpha $ .