Solveeit Logo

Question

Mathematics Question on Matrices

If the matrix AB = O, then

A

A = O or B = O

B

A = O and B = O

C

It is not necessary that either A = O or B = O

D

AO,BOA \neq O, B \neq O

Answer

It is not necessary that either A = O or B = O

Explanation

Solution

AB=OAB=0A.B=0AB = O \Rightarrow \left|AB \right| = 0 \Rightarrow \left|A\right|. \left|B\right|=0 A=0orB=0\Rightarrow \left|A\right| =0 \,or \,\left|B\right| = 0 when AB = O, neither A nor B may be O. For example if A=[10 00]A = \begin{bmatrix}1&0\\\ 0&0\end{bmatrix} and B=[00 10]B = \begin{bmatrix}0&0\\\ 1&0\end{bmatrix} , then AB=[10 00][00 10]=[00 00]AB = \begin{bmatrix}1&0\\\ 0&0\end{bmatrix} \begin{bmatrix}0&0\\\ 1&0\end{bmatrix} = \begin{bmatrix}0&0\\\ 0&0\end{bmatrix} But none of A and B are zero matrices. So if AB is zero it is not necessary that either A = O or B =O.