Solveeit Logo

Question

Question: If the matrix A = \(\begin{bmatrix} y + a & b & c \\ a & y + b & c \\ a & b & y + c \end{bmatrix}\)h...

If the matrix A = [y+abcay+bcaby+c]\begin{bmatrix} y + a & b & c \\ a & y + b & c \\ a & b & y + c \end{bmatrix}has rank 3, then –

A

y¹ (a + b + c)

B

y ¹ 1

C

y = 0

D

y ¹ – (a + b + c) and y ¹ 0

Answer

y ¹ – (a + b + c) and y ¹ 0

Explanation

Solution

Here the rank of A is 3

Therefore, the minor of order 3 of A ¹ 0.

Ž y+abcay+bcaby+c\left| \begin{matrix} y + a & b & c \\ a & y + b & c \\ a & b & y + c \end{matrix} \right| ¹ 0

Ž (y + a + b + c) 1bc1y+bc1by+c\left| \begin{matrix} 1 & b & c \\ 1 & y + b & c \\ 1 & b & y + c \end{matrix} \right| ¹ 0

[Applying C1 ® C1 + C2 + C3 and taking (y + a + b + c) common from C1]

Ž (y + a + b + c) 1bc0y000y\left| \begin{matrix} 1 & b & c \\ 0 & y & 0 \\ 0 & 0 & y \end{matrix} \right|¹ 0[Applying R2 ® R2 – R1, R3 ® R3 – R1]

Ž (y + a + b + c) (y2) ¹ 0 [Expanding along C1]Ž y ¹ 0 and y ¹ –(a + b + c)

Hence (4) is correct answer.