Solveeit Logo

Question

Question: If the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ 4 & 1 & 1 \\ -2 & 1 & -1 \end{bmatrix}$, find $A^2...

If the matrix

A=[122411211]A = \begin{bmatrix} 1 & -2 & 2 \\ 4 & 1 & 1 \\ -2 & 1 & -1 \end{bmatrix}, find A23A+5IA^2 - 3A + 5I and write the matrix B where B is the transpose of (A23A+5I)(A^2 - 3A + 5I)

Answer

The matrix A23A+5IA^2 - 3A + 5I is:

[9486451016]\begin{bmatrix} -9 & 4 & -8 \\ -6 & -4 & 5 \\ 10 & 1 & 6 \end{bmatrix}

The matrix B, which is the transpose of (A23A+5I)(A^2 - 3A + 5I), is:

B=[9610441856]B = \begin{bmatrix} -9 & -6 & 10 \\ 4 & -4 & 1 \\ -8 & 5 & 6 \end{bmatrix}
Explanation

Solution

To solve the problem, we need to perform matrix multiplication, scalar multiplication, matrix addition/subtraction, and finally, find the transpose of the resulting matrix.

Given matrix: A=[122411211]A = \begin{bmatrix} 1 & -2 & 2 \\ 4 & 1 & 1 \\ -2 & 1 & -1 \end{bmatrix}

Step 1: Calculate A2A^2 A2=A×A=[122411211][122411211]A^2 = A \times A = \begin{bmatrix} 1 & -2 & 2 \\ 4 & 1 & 1 \\ -2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 2 \\ 4 & 1 & 1 \\ -2 & 1 & -1 \end{bmatrix}

The elements of A2A^2 are calculated as follows: (A2)11=(1)(1)+(2)(4)+(2)(2)=184=11(A^2)_{11} = (1)(1) + (-2)(4) + (2)(-2) = 1 - 8 - 4 = -11 (A2)12=(1)(2)+(2)(1)+(2)(1)=22+2=2(A^2)_{12} = (1)(-2) + (-2)(1) + (2)(1) = -2 - 2 + 2 = -2 (A2)13=(1)(2)+(2)(1)+(2)(1)=222=2(A^2)_{13} = (1)(2) + (-2)(1) + (2)(-1) = 2 - 2 - 2 = -2

(A2)21=(4)(1)+(1)(4)+(1)(2)=4+42=6(A^2)_{21} = (4)(1) + (1)(4) + (1)(-2) = 4 + 4 - 2 = 6 (A2)22=(4)(2)+(1)(1)+(1)(1)=8+1+1=6(A^2)_{22} = (4)(-2) + (1)(1) + (1)(1) = -8 + 1 + 1 = -6 (A2)23=(4)(2)+(1)(1)+(1)(1)=8+11=8(A^2)_{23} = (4)(2) + (1)(1) + (1)(-1) = 8 + 1 - 1 = 8

(A2)31=(2)(1)+(1)(4)+(1)(2)=2+4+2=4(A^2)_{31} = (-2)(1) + (1)(4) + (-1)(-2) = -2 + 4 + 2 = 4 (A2)32=(2)(2)+(1)(1)+(1)(1)=4+11=4(A^2)_{32} = (-2)(-2) + (1)(1) + (-1)(1) = 4 + 1 - 1 = 4 (A2)33=(2)(2)+(1)(1)+(1)(1)=4+1+1=2(A^2)_{33} = (-2)(2) + (1)(1) + (-1)(-1) = -4 + 1 + 1 = -2

So, A2=[1122668442]A^2 = \begin{bmatrix} -11 & -2 & -2 \\ 6 & -6 & 8 \\ 4 & 4 & -2 \end{bmatrix}

Step 2: Calculate 3A3A 3A=3[122411211]=[3×13×(2)3×23×43×13×13×(2)3×13×(1)]=[3661233633]3A = 3 \begin{bmatrix} 1 & -2 & 2 \\ 4 & 1 & 1 \\ -2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 3 \times 1 & 3 \times (-2) & 3 \times 2 \\ 3 \times 4 & 3 \times 1 & 3 \times 1 \\ 3 \times (-2) & 3 \times 1 & 3 \times (-1) \end{bmatrix} = \begin{bmatrix} 3 & -6 & 6 \\ 12 & 3 & 3 \\ -6 & 3 & -3 \end{bmatrix}

Step 3: Calculate 5I5I Since A is a 3x3 matrix, II is the 3x3 identity matrix: I=[100010001]I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} 5I=5[100010001]=[500050005]5I = 5 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}

Step 4: Calculate A23A+5IA^2 - 3A + 5I A23A+5I=[1122668442][3661233633]+[500050005]A^2 - 3A + 5I = \begin{bmatrix} -11 & -2 & -2 \\ 6 & -6 & 8 \\ 4 & 4 & -2 \end{bmatrix} - \begin{bmatrix} 3 & -6 & 6 \\ 12 & 3 & 3 \\ -6 & 3 & -3 \end{bmatrix} + \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}

Perform the element-wise operations: =[(113+5)(2(6)+0)(26+0)(612+0)(63+5)(83+0)(4(6)+0)(43+0)(2(3)+5)]= \begin{bmatrix} (-11 - 3 + 5) & (-2 - (-6) + 0) & (-2 - 6 + 0) \\ (6 - 12 + 0) & (-6 - 3 + 5) & (8 - 3 + 0) \\ (4 - (-6) + 0) & (4 - 3 + 0) & (-2 - (-3) + 5) \end{bmatrix}

=[(14+5)(2+6)(8)(6)(9+5)(5)(4+6)(1)(2+3+5)]= \begin{bmatrix} (-14 + 5) & (-2 + 6) & (-8) \\ (-6) & (-9 + 5) & (5) \\ (4 + 6) & (1) & (-2 + 3 + 5) \end{bmatrix}

=[9486451016]= \begin{bmatrix} -9 & 4 & -8 \\ -6 & -4 & 5 \\ 10 & 1 & 6 \end{bmatrix}

Step 5: Find the transpose of (A23A+5I)(A^2 - 3A + 5I) Let C=A23A+5I=[9486451016]C = A^2 - 3A + 5I = \begin{bmatrix} -9 & 4 & -8 \\ -6 & -4 & 5 \\ 10 & 1 & 6 \end{bmatrix}. The transpose of CC, denoted as B=CTB = C^T, is obtained by interchanging its rows and columns.

B=CT=[9610441856]B = C^T = \begin{bmatrix} -9 & -6 & 10 \\ 4 & -4 & 1 \\ -8 & 5 & 6 \end{bmatrix}

The final matrix A23A+5IA^2 - 3A + 5I is [9486451016]\begin{bmatrix} -9 & 4 & -8 \\ -6 & -4 & 5 \\ 10 & 1 & 6 \end{bmatrix}. The matrix B, which is the transpose of (A23A+5I)(A^2 - 3A + 5I), is [9610441856]\begin{bmatrix} -9 & -6 & 10 \\ 4 & -4 & 1 \\ -8 & 5 & 6 \end{bmatrix}.