Question
Question: If the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ 4 & 1 & 1 \\ -2 & 1 & -1 \end{bmatrix}$, find $A^2...
If the matrix
A=14−2−21121−1, find A2−3A+5I and write the matrix B where B is the transpose of (A2−3A+5I)

The matrix A2−3A+5I is:
−9−6104−41−856The matrix B, which is the transpose of (A2−3A+5I), is:
B=−94−8−6−451016Solution
To solve the problem, we need to perform matrix multiplication, scalar multiplication, matrix addition/subtraction, and finally, find the transpose of the resulting matrix.
Given matrix: A=14−2−21121−1
Step 1: Calculate A2 A2=A×A=14−2−21121−114−2−21121−1
The elements of A2 are calculated as follows: (A2)11=(1)(1)+(−2)(4)+(2)(−2)=1−8−4=−11 (A2)12=(1)(−2)+(−2)(1)+(2)(1)=−2−2+2=−2 (A2)13=(1)(2)+(−2)(1)+(2)(−1)=2−2−2=−2
(A2)21=(4)(1)+(1)(4)+(1)(−2)=4+4−2=6 (A2)22=(4)(−2)+(1)(1)+(1)(1)=−8+1+1=−6 (A2)23=(4)(2)+(1)(1)+(1)(−1)=8+1−1=8
(A2)31=(−2)(1)+(1)(4)+(−1)(−2)=−2+4+2=4 (A2)32=(−2)(−2)+(1)(1)+(−1)(1)=4+1−1=4 (A2)33=(−2)(2)+(1)(1)+(−1)(−1)=−4+1+1=−2
So, A2=−1164−2−64−28−2
Step 2: Calculate 3A 3A=314−2−21121−1=3×13×43×(−2)3×(−2)3×13×13×23×13×(−1)=312−6−63363−3
Step 3: Calculate 5I Since A is a 3x3 matrix, I is the 3x3 identity matrix: I=100010001 5I=5100010001=500050005
Step 4: Calculate A2−3A+5I A2−3A+5I=−1164−2−64−28−2−312−6−63363−3+500050005
Perform the element-wise operations: =(−11−3+5)(6−12+0)(4−(−6)+0)(−2−(−6)+0)(−6−3+5)(4−3+0)(−2−6+0)(8−3+0)(−2−(−3)+5)
=(−14+5)(−6)(4+6)(−2+6)(−9+5)(1)(−8)(5)(−2+3+5)
=−9−6104−41−856
Step 5: Find the transpose of (A2−3A+5I) Let C=A2−3A+5I=−9−6104−41−856. The transpose of C, denoted as B=CT, is obtained by interchanging its rows and columns.
B=CT=−94−8−6−451016
The final matrix A2−3A+5I is −9−6104−41−856. The matrix B, which is the transpose of (A2−3A+5I), is −94−8−6−451016.