Question
Question: If the matrix $A = \begin{bmatrix} -1 & 0 & 5 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ satisfies the...
If the matrix A=−100030501 satisfies the equation A27+aA26+bA=−40000050−2 for some real numbers a and b, then

a=-3, b=0
Solution
The given matrix is A=−100030501.
We need to find real numbers a and b such that A27+aA26+bA=−40000050−2.
First, let's compute the powers of A. A1=−100030501
A2=A⋅A=−100030501−100030501=100090001
A3=A2⋅A=100090001−100030501=−1000270501
A4=A3⋅A=−1000270501−100030501=1000810001
We observe a pattern for An:
For odd n≥1: An=(−1)n0003n0501n=−10003n0501
For even n≥2: An=(−1)n0003n0001n=10003n0001
Using this pattern for n=27 (odd) and n=26 (even):
A27=−10003270501
A26=10003260001
Substitute these into the given matrix equation:
−10003270501+a10003260001+b−100030501=−40000050−2
Perform the matrix addition and scalar multiplication on the left side:
(−1)+a(1)+b(−1)0+0+00+a(0)+b(0)0+0+0327+a(326)+b(3)0+0+05+a(0)+b(5)0+0+01+a(1)+b(1)=−40000050−2
−1+a−b000327+a326+3b05+5b01+a+b=−40000050−2
Equating the corresponding entries of the matrices:
From entry (1,1): −1+a−b=−4⟹a−b=−3 (Equation 1)
From entry (1,3): 5+5b=5⟹5b=0⟹b=0 (Equation 2)
From entry (2,2): 327+a326+3b=0 (Equation 3)
From entry (3,3): 1+a+b=−2⟹a+b=−3 (Equation 4)
We have a system of linear equations for a and b.
From Equation 2, we have b=0.
Substitute b=0 into Equation 1: a−0=−3⟹a=−3.
Substitute b=0 into Equation 4: a+0=−3⟹a=−3.
Both Equation 1 and Equation 4 give a=−3 and b=0.
Finally, check if these values satisfy Equation 3:
327+a326+3b=327+(−3)326+3(0)=327−31⋅326+0=327−327=0.
Equation 3 is satisfied.
Thus, the values of a and b are a=−3 and b=0.