Solveeit Logo

Question

Mathematics Question on Matrices

If the matrix A=(200 020 202),A=\begin{pmatrix}2&0&0\\\ 0&2&0\\\ 2&0&2\end{pmatrix}, then An=(a00 0a;0 b0a;),nNA^{n}=\begin{pmatrix}a&0&0\\\ 0&a;&0\\\ b&0&a;\end{pmatrix}, n\,\in\,N where

A

a=2n,b=2na = 2n, b = 2^n

B

a=2n,b=2na = 2^n, b = 2n

C

a=2n,b=n2n1a = 2^n, b = n^{2n-1}

D

a=2n,b=n2na = 2^n, b = n2^n

Answer

a=2n,b=n2na = 2^n, b = n2^n

Explanation

Solution

A=2(100 010 101)An=2n(100 010 n01)A=2\begin{pmatrix}1&0&0\\\ 0&1&0\\\ 1&0&1\end{pmatrix} \Rightarrow A^{n}=2^{n}\begin{pmatrix}1&0&0\\\ 0&1&0\\\ n&0&1\end{pmatrix}