Solveeit Logo

Question

Question: If the \({m^{th}}\) term of an A.P be \(\dfrac{1}{n}\) and \({n^{th}}\) term be \(\dfrac{1}{m}\) , t...

If the mth{m^{th}} term of an A.P be 1n\dfrac{1}{n} and nth{n^{th}} term be 1m\dfrac{1}{m} , then show that its (mn)th{(mn)^{th}} term is 1.

Explanation

Solution

Hint: Here, we will use the Arithmetic Progression Concept and the nth{n^{th}}term formulae i.e..,Tn=a+(n1)d{T_n} = a + (n - 1)d.

Complete step-by-step answer:
Given,
The mth{m^{th}}term of an A.P is 1n\dfrac{1}{n} and nth{n^{th}}term is 1m\dfrac{1}{m}
Now, let us consider ‘a’ be the first term and‘d’ is the common difference of an A.P.As, we know that the nth{n^{th}}term of an A.P will be Tn=a+(n1)d{T_n} = a + (n - 1)d.
Therefore, the mth{m^{th}} term can be written as
mthterm=1n 1n=a+(m1)d(1)  \Rightarrow {m^{th}}term = \dfrac{1}{n} \\\ \Rightarrow \dfrac{1}{n} = a + (m - 1)d \to (1) \\\
Similarly, the nth{n^{th}}term is given as 1m\dfrac{1}{m}, it can be written as
nthterm=1m 1m=a+(n1)d(2)  \Rightarrow {n^{th}}term = \dfrac{1}{m} \\\ \Rightarrow \dfrac{1}{m} = a + (n - 1)d \to (2) \\\
Let us subtract equation (2) from equation (1), we get
1n1m=a+(m1)da(n1)d 1n1m=mddnd+d mnmn=(mn)d 1mn=d  \Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = a + (m - 1)d - a - (n - 1)d \\\ \Rightarrow \dfrac{1}{n} - \dfrac{1}{m} = md - d - nd + d \\\ \Rightarrow \dfrac{{m - n}}{{mn}} = (m - n)d \\\ \Rightarrow \dfrac{1}{{mn}} = d \\\
Hence, we obtained the value of d i.e.., 1mn\dfrac{1}{{mn}}.Now let us substitute the obtained value of d in equation (1), we get
(1)1n=a+(m1)d 1n=a+(m1)mn 1n=a+1n1mn 1n1n+1mn=a 1mn=a  (1) \Rightarrow \dfrac{1}{n} = a + (m - 1)d \\\ \Rightarrow \dfrac{1}{n} = a + \dfrac{{(m - 1)}}{{mn}} \\\ \Rightarrow \dfrac{1}{n} = a + \dfrac{1}{n} - \dfrac{1}{{mn}} \\\ \Rightarrow \dfrac{1}{n} - \dfrac{1}{n} + \dfrac{1}{{mn}} = a \\\ \Rightarrow \dfrac{1}{{mn}} = a \\\
Hence, here also we got the value of ‘a’ as 1mn\dfrac{1}{{mn}}.Therefore, we can say
a=d=1mna = d = \dfrac{1}{{mn}}
Now, we need to find the (mn)th{(mn)^{th}}term which is equal to ‘a+(mn1)da + (mn - 1)d’.So substituting the obtained values of ‘a’ and d’ we get
(mn)thterm=a+(mn1)d=1mn+(mn1)(1mn)=1mn+11mn=1 (mn)thterm=1  \Rightarrow {(mn)^{th}}term = a + (mn - 1)d = \dfrac{1}{{mn}} + (mn - 1)(\dfrac{1}{{mn}}) = \dfrac{1}{{mn}} + 1 - \dfrac{1}{{mn}} = 1 \\\ \Rightarrow {(mn)^{th}}term = 1 \\\
Hence, we proved that the value of (mn)th{(mn)^{th}}term is11.

Note: In an AP, d is the common difference of the consecutive terms i.e..,t3t2=t2t1=tntn1=d{t_3} - {t_2} = {t_2} - {t_1} = {t_n} - {t_{n - 1}} = d.