Solveeit Logo

Question

Mathematics Question on Sequence and series

If the mthm^{th} term and the nth term of an APAP are respectively 1n\frac{1}{n} and 1m\frac{1}{m}, then the (mn)th(mn )^{th} term of the APAP is

A

1mn\frac{1}{mn}

B

mn\frac{m}{n}

C

11

D

nm\frac{n}{m}

Answer

11

Explanation

Solution

Let us consider in A.P series

First term =a and common difference =d

mth term= 1n\frac1n

am=a+(m1)d=1n....(1)\therefore a_m=a+(m-1)d=\frac{1}{n}....(1)

nthn^{th}term = 1m....(2)\frac{1}{m}....(2)

Now subtract (2) from (1)

(m1)d(n1)=1n1m\therefore (m-1)d-(n-1) =\frac1n-\frac1m

d(m-n) = mnmn\frac{m-n}{mn}

d=1mn.....(3)d= \frac{1}{mn}.....(3)

From (3) & (2) we get:

a+(mn)1mn=1na+(m-n)\frac {1}{mn} = \frac1n

a=1nm1mn\frac1n-\frac{m-1}{mn}

a=1mna=\frac{1}{mn}

sum of first ‘K’ terms = k2[2a+(k1)d]\frac k2 [2a+(k-1) d]

sum = mn2[2a+(mn1)d]\frac{mn}{2}[2a+(mn-1)d]

=mn2[2a+(mn1)1mn]=1+mn2\frac{mn}{2}[2a+(mn-1) \frac{1}{mn}]=\frac{1+mn}{2}