Solveeit Logo

Question

Question: If the lines $y = 3x + 1$ and $2y = x + 3$ are equally inclined to the line $y = mx + 4$, then $m =$...

If the lines y=3x+1y = 3x + 1 and 2y=x+32y = x + 3 are equally inclined to the line y=mx+4y = mx + 4, then m=m =

A

1+327\frac{1+3\sqrt{2}}{7}

B

1327\frac{1-3\sqrt{2}}{7}

C

1±327\frac{1\pm3\sqrt{2}}{7}

D

1±527\frac{1\pm5\sqrt{2}}{7}

Answer

1±527\frac{1\pm5\sqrt{2}}{7}

Explanation

Solution

Let the slopes of the given lines y=3x+1y = 3x + 1, 2y=x+32y = x + 3, and y=mx+4y = mx + 4 be m1m_1, m2m_2, and m3m_3 respectively.

From the equations, we have: m1=3m_1 = 3

2y=x+3    y=12x+322y = x + 3 \implies y = \frac{1}{2}x + \frac{3}{2}, so m2=12m_2 = \frac{1}{2}

m3=mm_3 = m

The condition that the lines y=3x+1y = 3x + 1 and 2y=x+32y = x + 3 are equally inclined to the line y=mx+4y = mx + 4 means that the angle between the first line and the third line is equal to the angle between the second line and the third line.

Let θ1\theta_1 be the angle between the line with slope m1m_1 and the line with slope m3m_3. Let θ2\theta_2 be the angle between the line with slope m2m_2 and the line with slope m3m_3.

The angle θ\theta between two lines with slopes mam_a and mbm_b is given by tanθ=mamb1+mamb\tan \theta = \left| \frac{m_a - m_b}{1 + m_a m_b} \right|.

According to the problem, θ1=θ2\theta_1 = \theta_2, which implies tanθ1=tanθ2\tan \theta_1 = \tan \theta_2.

m1m31+m1m3=m2m31+m2m3\left| \frac{m_1 - m_3}{1 + m_1 m_3} \right| = \left| \frac{m_2 - m_3}{1 + m_2 m_3} \right|

Substitute the values of m1m_1 and m2m_2:

3m1+3m=12m1+12m\left| \frac{3 - m}{1 + 3m} \right| = \left| \frac{\frac{1}{2} - m}{1 + \frac{1}{2} m} \right|

3m1+3m=12m22+m2=12m2+m\left| \frac{3 - m}{1 + 3m} \right| = \left| \frac{\frac{1 - 2m}{2}}{\frac{2 + m}{2}} \right| = \left| \frac{1 - 2m}{2 + m} \right|

This equation gives two possibilities:

Case 1: 3m1+3m=12m2+m\frac{3 - m}{1 + 3m} = \frac{1 - 2m}{2 + m}

(3m)(2+m)=(12m)(1+3m)(3 - m)(2 + m) = (1 - 2m)(1 + 3m)

6+3m2mm2=1+3m2m6m26 + 3m - 2m - m^2 = 1 + 3m - 2m - 6m^2

6+mm2=1+m6m26 + m - m^2 = 1 + m - 6m^2

6m2=16m26 - m^2 = 1 - 6m^2

5m2=55m^2 = -5

m2=1m^2 = -1

This equation has no real solution for mm.

Case 2: 3m1+3m=(12m2+m)=2m12+m\frac{3 - m}{1 + 3m} = - \left( \frac{1 - 2m}{2 + m} \right) = \frac{2m - 1}{2 + m}

(3m)(2+m)=(2m1)(1+3m)(3 - m)(2 + m) = (2m - 1)(1 + 3m)

6+3m2mm2=2m+6m213m6 + 3m - 2m - m^2 = 2m + 6m^2 - 1 - 3m

6+mm2=m+6m216 + m - m^2 = -m + 6m^2 - 1

Rearrange the terms to form a quadratic equation:

6m2+m2mm16=06m^2 + m^2 - m - m - 1 - 6 = 0

7m22m7=07m^2 - 2m - 7 = 0

We solve this quadratic equation for mm using the quadratic formula m=b±b24ac2am = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.

Here, a=7a = 7, b=2b = -2, c=7c = -7.

m=(2)±(2)24(7)(7)2(7)m = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(7)(-7)}}{2(7)}

m=2±4+19614m = \frac{2 \pm \sqrt{4 + 196}}{14}

m=2±20014m = \frac{2 \pm \sqrt{200}}{14}

m=2±100×214m = \frac{2 \pm \sqrt{100 \times 2}}{14}

m=2±10214m = \frac{2 \pm 10\sqrt{2}}{14}

Factor out 2 from the numerator:

m=2(1±52)14m = \frac{2(1 \pm 5\sqrt{2})}{14}

m=1±527m = \frac{1 \pm 5\sqrt{2}}{7}

The possible values of mm are 1+527\frac{1 + 5\sqrt{2}}{7} and 1527\frac{1 - 5\sqrt{2}}{7}.