Solveeit Logo

Question

Question: If the lines \(x=ay+b\) , \(z=cy+d\) and \(x=a'z+b'\) , \(y=c'z+d'\) are perpendicular lines then wh...

If the lines x=ay+bx=ay+b , z=cy+dz=cy+d and x=az+bx=a'z+b' , y=cz+dy=c'z+d' are perpendicular lines then which of the following options is true
a) cc !!!! +a+a !!!! =0 b) aa !!!! +c+c !!!! =0 c) ab !!!! +bc !!!! +1=0 d) bb !!!! +cc !!!! +1=0 \begin{aligned} & \text{a) cc }\\!\\!'\\!\\!\text{ +a+a }\\!\\!'\\!\\!\text{ =0} \\\ & \text{b) aa }\\!\\!'\\!\\!\text{ +c+c }\\!\\!'\\!\\!\text{ =0} \\\ & \text{c) ab }\\!\\!'\\!\\!\text{ +bc }\\!\\!'\\!\\!\text{ +1=0} \\\ & \text{d) bb }\\!\\!'\\!\\!\text{ +cc }\\!\\!'\\!\\!\text{ +1=0} \\\ \end{aligned}

Explanation

Solution

We know that if lines xx1a=yy1b=zz1c\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c} and the line xx2p=yy2q=zz2r\dfrac{x-{{x}_{2}}}{p} = \dfrac{y-{{y}_{2}}}{q} = \dfrac{z-{{z}_{2}}}{r} are perpendicular then we know that ap+bq+cr=0ap+bq+cr=0. Hence we will write the given equation in this form and then find the condition for lines to be perpendicular

Complete step-by-step solution:
Now consider the line x=ay+bx=ay+b , z=cy+dz=cy+d we want to write this line in the form of xx1a=yy1b=zz1c\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c} . Hence we will rearrange the terms of the equation to do so.
Let x=ay+b...........(1)x=ay+b...........(1)
And z=cy+d...............(2)z=cy+d...............(2)
Now consider equation (1)
x=ay+bx=ay+b
Taking b on LHS we get
xb=ayx-b=ay.
Now dividing the whole equation by ‘a’ we get.
xba=y........................(3)\dfrac{x-b}{a}=y........................(3)
Now consider equation (2)
z=cy+dz=cy+d
Taking d on RHS we get
zd=cyz-d=cy
Now dividing the whole equation by x we get
zdc=y........................(4)\dfrac{z-d}{c}=y........................(4)
Now from equation (3) and equation (4) we get
xba=zdc=y1.....................(5)\dfrac{x-b}{a}=\dfrac{z-d}{c}=\dfrac{y}{1}.....................(5)
Hence now we know that the equation is in the form xx1a=yy1b=zz1c\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c}
Now consider the linex=az+bx=a'z+b' , y=cz+dy=c'z+d'
Let x=az+b.....................(6)x=a'z+b'.....................(6)
And y=cz+d.................(7)y=cz'+d'.................(7)
Now consider equation (6)
x=az+bx=a'z+b'
Now taking b’ to LHS we get.
xb=azx-b'=a'z
Now we will divide the equation by z.
We get xba=z.................(8)\dfrac{x-b'}{a'}=z.................(8)
Now consider the equation (7)
y=cz+dy=c'z+d'
Taking d’ to LHS we get
yd=czy-d'=c'z
Now dividing the whole equation by c’ we get
ydc=z.................(9)\dfrac{y-d'}{c'}=z.................(9)
Now from equation (8) and equation (9) we get
xba=ydc=z1..................(10)\dfrac{x-b'}{a'}=\dfrac{y-d'}{c'}=\dfrac{z}{1}..................(10)
Hence we have the equation in the form xx1a=yy1b=zz1c\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c}
Now we know that if the line xx1a=yy1b=zz1c\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c} and the line xx2p+yy2q+zz2r\dfrac{x-{{x}_{2}}}{p}+\dfrac{y-{{y}_{2}}}{q}+\dfrac{z-{{z}_{2}}}{r} are perpendicular then we know that ap+bq+cr=0ap+bq+cr=0.
Hence using this property to equation(5) and equation (10) we get
aa+c+c=0aa'+c+c'=0
Option b is the correct option.

Note: Now consider two lines xx1a=yy1b=zz1c\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c} and the line xx2p=yy2q=zz2r\dfrac{x-{{x}_{2}}}{p}=\dfrac{y-{{y}_{2}}}{q} =\dfrac{z-{{z}_{2}}}{r}
Then a, b, c and p, q, r are the direction ratios of the lines respectively. Hence if the lines are perpendicular the dot product of the direction ratios of the lines is equal to zero. And hence we get the condition ap+bq+cr=0ap+bq+cr=0 .