Solveeit Logo

Question

Mathematics Question on Vectors

If the lines
r=(i^j^+k^)+λ(3j^k^)=(i^j^+k^)+λ(3j^k^)\stackrel{→}{r}= ( \hat{i} - \hat{j} + \hat{k} ) + λ (\hat{3j} - \hat{k} )= ( \hat{i} - \hat{j} + \hat{k} ) + λ (\hat{3j} - \hat{k} )
and
r=(αi^j^)+μ(2j^3k^)\stackrel{→}{r} = ( \alpha \hat{i} - \hat{j} ) + μ( \hat{2j} - \hat{3k} )
are co-planer , then the distance of the plane containing these two lines from the point (α,0,0)( α , 0 , 0 ) is :

A

29\frac{2}{9}

B

211\frac{2}{11}

C

411\frac{4}{11}

D

2

Answer

211\frac{2}{11}

Explanation

Solution

The correct answer is (B) : $$211\frac{2}{11}

∵ Both lines are coplanar, so
α101 031 203 \begin{vmatrix} \alpha-1 & 0 & -1 \\\ 0 & 3 & -1 \\\ 2 & 0 & -3\\\ \end{vmatrix}= 0
α=53⇒ α = \frac{5}{3}
Equation of plane containing both lines
xyy+1z1 031 203 \begin{vmatrix} x-y & y+1 & z-1 \\\ 0 & 3 & -1 \\\ 2 & 0 & -3\\\ \end{vmatrix}= 0
9x+2y+6z=13⇒ 9x + 2y + 6z = 13
So , distance of ( 5/3 , 0 ,0) from this plane
=281+4+26=211= \frac{2}{\sqrt{81+4+26}} = \frac{2}{11}