Solveeit Logo

Question

Question: If the lines represented by the equation \(ax^{2} - bxy - y^{2} = 0\) make angles \(\alpha\) and \(\...

If the lines represented by the equation ax2bxyy2=0ax^{2} - bxy - y^{2} = 0 make angles α\alpha and β\beta with the x-axis, then tan(α+β)\tan(\alpha + \beta) =

A

b1+a\frac{b}{1 + a}

B

b1+a\frac{- b}{1 + a}

C

a1+b\frac{a}{1 + b}

D

None of these

Answer

b1+a\frac{- b}{1 + a}

Explanation

Solution

Here the equation is ax2bxyy2=0ax^{2} - bxy - y^{2} = 0 and given that m1=tanαm_{1} = \tan\alpha and m2=tanβm_{2} = \tan\betaand we know that

m1+m2=b1=tanα+tanβm_{1} + m_{2} = \frac{b}{- 1} = \tan\alpha + \tan\beta

and m1m2=a1=tanα.tanβm_{1}m_{2} = \frac{a}{- 1} = \tan\alpha.\tan\beta

tan(α+β)=tanα+tanβ1tanαtanβ=b1(a)=b(1+a)\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta} = \frac{- b}{1 - ( - a)} = \frac{- b}{(1 + a)}.