Solveeit Logo

Question

Question: If the lines of regression of y on x and x on y make angles \(30^{o}\) and \(60^{o}\) respectively w...

If the lines of regression of y on x and x on y make angles 30o30^{o} and 60o60^{o} respectively with the positive direction of X-axis, then the correlation coefficient between x and y is

A

12\frac{1}{\sqrt{2}}

B

12\frac{1}{2}

C

13\frac{1}{\sqrt{3}}

D

13\frac{1}{3}

Answer

13\frac{1}{\sqrt{3}}

Explanation

Solution

Slope of regression line of y on x = byx=tan30o=13b_{yx} = \tan 30^{o} = \frac{1}{\sqrt{3}}

Slope of regression line of x on y = 1bxy=tan60o=3\frac{1}{b_{xy}} = \tan 60^{o} = \sqrt{3}

bxy=13b_{xy} = \frac{1}{\sqrt{3}}. Hence, r=bxy.byx=(13)(13)=13r = \sqrt{b_{xy}.b_{yx}} = \sqrt{\left( \frac{1}{\sqrt{3}} \right)\left( \frac{1}{\sqrt{3}} \right)} = \frac{1}{\sqrt{3}}.