Solveeit Logo

Question

Question: If the lines \(b x + c y + a = 0\) and \(c x + a y + b = 0\) be concurrent, then...

If the lines bx+cy+a=0b x + c y + a = 0 and

cx+ay+b=0c x + a y + b = 0 be concurrent, then

A

a3+b3+c3+3abc=0a ^ { 3 } + b ^ { 3 } + c ^ { 3 } + 3 a b c = 0

B

a3+b3+c3abc=0a ^ { 3 } + b ^ { 3 } + c ^ { 3 } - a b c = 0

C

a3+b3+c33abc=0a ^ { 3 } + b ^ { 3 } + c ^ { 3 } - 3 a b c = 0

D

None of these

Answer

a3+b3+c33abc=0a ^ { 3 } + b ^ { 3 } + c ^ { 3 } - 3 a b c = 0

Explanation

Solution

Here the given lines are, bx+cy+a=0b x + c y + a = 0,

cx+ay+b=0c x + a y + b = 0

The lines will be concurrent, iff abcbcacab=0\left| \begin{array} { l l l } a & b & c \\ b & c & a \\ c & a & b \end{array} \right| = 0

a3+b3+c33abc=0a ^ { 3 } + b ^ { 3 } + c ^ { 3 } - 3 a b c = 0