Question
Question: If the lines \(b x + c y + a = 0\) and \(c x + a y + b = 0\) be concurrent, then...
If the lines bx+cy+a=0 and
cx+ay+b=0 be concurrent, then
A
a3+b3+c3+3abc=0
B
a3+b3+c3−abc=0
C
a3+b3+c3−3abc=0
D
None of these
Answer
a3+b3+c3−3abc=0
Explanation
Solution
Here the given lines are, bx+cy+a=0,
cx+ay+b=0
The lines will be concurrent, iff abcbcacab=0
⇒ a3+b3+c3−3abc=0