Question
Question: If the lines \(l _ { 1 } x + m _ { 1 } y + n _ { 1 } = 0\) and \(l _ { 2 } x + m _ { 2 } y + n _ { 2...
If the lines l1x+m1y+n1=0 and l2x+m2y+n2=0 cuts the axes at con-cyclic points, then.
l1l2=m1m2
l1m1=l2m2
l1l2+m1m2=0
l1m2=l2m1
l1l2=m1m2
Solution
P1≡(−l1n1,0) ,P2≡(0,m1−n1), P3≡(−l2n2,0) and
P4≡(0,−m2n2) {∠P1P2P3=∠P1P4P3}

Now, m12=−m1l1,m23=−n2n1⋅m1l2,m14=−n1n2⋅m2l1,
m34=−m2l2
tanθ=1+n2m12n1l1l2−m1l1+n2m1n1l2 and tanϕ=1+n1m22n2l1l2−n1m2n2l1+m2l2
Now , tanθ=tanϕ⇒m1m2=l1l2
Aliter : Line l1x+m1y+n1=0 cuts x and y-axes in A(−l1n1,0) , B(0,−m1n1) and line l2x+m2y+n2=0 cuts axes in C(−l2n2,0) , D(0,m2−n2) .
So AC and BD are chords along x and y-axes intersecting at origin O. Since A, B, C, D are concyclic, so OA.OC = OB.OD
or (−l1n1)(−l2n2)=(−m1n1)(−m2n2) or ∣l1l2∣=∣m1m2∣
So l1l2=m1m2is correct among the given choices, which is given in (1).