Solveeit Logo

Question

Question: If the lines \(x + y = 6\) and \(x + 2 y = 4\) be diameters of the circle whose diameter is 20, then...

If the lines x+y=6x + y = 6 and x+2y=4x + 2 y = 4 be diameters of the circle whose diameter is 20, then the equation of the circle is.

A

x2+y216x+4y32=0x ^ { 2 } + y ^ { 2 } - 16 x + 4 y - 32 = 0

B

x2+y2+16x+4y32=0x ^ { 2 } + y ^ { 2 } + 16 x + 4 y - 32 = 0

C

x2+y2+16x+4y+32=0x ^ { 2 } + y ^ { 2 } + 16 x + 4 y + 32 = 0

D

x2+y2+16x4y+32=0x ^ { 2 } + y ^ { 2 } + 16 x - 4 y + 32 = 0

Answer

x2+y216x+4y32=0x ^ { 2 } + y ^ { 2 } - 16 x + 4 y - 32 = 0

Explanation

Solution

Here r=10r = 10 (radius)

Centre will be the point of intersection of the diameters, i.e. (8, –2). Hence required equation is

(x8)2+(y+2)2=102x2+y216x+4y32=0( x - 8 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 10 ^ { 2 } \Rightarrow x ^ { 2 } + y ^ { 2 } - 16 x + 4 y - 32 = 0.