Solveeit Logo

Question

Mathematics Question on introduction to three dimensional geometry

If the lines x21=y31=z4k\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k} and x1k=y42=z51\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1} are coplanar, then k can have

A

any value

B

exactly one value

C

exactly two values

D

exactly three values

Answer

exactly two values

Explanation

Solution

Condition for two lines are coplanar \hspace15mm x1x2y1y2z1z2 1m1n1 l1m2m3 =0 \begin{vmatrix} x_1 -x_2 & y_1 - y_2 & z_1 - z_2 \\\ 1 & m_1 & n_1 \\\ l_1 & m_2 & m_3 \\\ \end{vmatrix}= 0 Where, (x1,y1,z1)(x_1,y_1,z_1) and (x2,y2,z2)(x_2,y_2,z_2) are the points lie on lines (i) and (ii) respectively and <l1,m1,n1> < l_1,m_1,n_1> and <l2,m2,n2>< l_2,m_2,n_2 > are the direction cosines of the line (i) and line (ii), respectively. 213445 11k k21 =0\therefore \begin{vmatrix} 2-1 & 3 -4 & 4 - 5 \\\ 1 & 1 & -k \\\ k & 2 & 1 \\\ \end{vmatrix}=0 11\-1 11k k21 =0\Rightarrow \begin{vmatrix} 1 & -1 & \- 1 \\\ 1 & 1 & -k \\\ k & 2 & 1 \\\ \end{vmatrix}=0 \Rightarrow 1(1+2k)+ (1+k2)(2k)=01 (1+2k)+\ (1+k^2) - (2-k) = 0 \Rightarrow \hspace15mm k2+2k+k=0 k^2 + 2k + k = 0 \Rightarrow \hspace20mm k2 + 3k =0 k^2\ +\ 3k\ = 0 \Rightarrow \hspace30mm k = 0, - 3 If 0 appears in the denominator, then the correct way of representing the equation of straight line is \hspace15mm x21=y31;z=4 \frac{x-2}{1} = \frac{y-3}{1}; z = 4