Question
Mathematics Question on introduction to three dimensional geometry
If the lines 2x−1=3y+3=4z−1 and 1x−3=2y−k=1z intersect, then the value of k is
23
29
−92
−23
29
Solution
Since, the lines intersect, therefore they must have a point in common, i.e.
\hspace20mm \frac{x-1}{2} = \frac{y+1}{3}=\frac{z-1}{4} = \lambda
and \hspace15mm \frac{x-3}{1} = \frac{y-k}{2}=\frac{z}{1} = \mu
\Rightarrow\hspace15mm x=2 \lambda + 1,y = 3 \lambda -1
\hspace20mm z = 4 \lambda + 1
and x=μ+3,y=2μ+k,z=μ are same.
\Rightarrow\hspace15mm 2 \lambda + 1 = \mu +3
\hspace20mm 3 \lambda - 1 = 2\mu + k
\hspace20mm 4 \lambda + 1 = \mu
On solving Ist and IIIrd terms, we get, λ=−23
and \hspace15mm \mu = -5
\therefore \hspace15mm k =3 \lambda - 2\mu - 1
\Rightarrow \hspace15mm k =3 \bigg(-\frac{3}{2}\bigg)-2(-5)-1 =\frac{9}{2}
\therefore \hspace15mm k =\frac{9}{2}