Solveeit Logo

Question

Question: If the lines a<sub>1</sub>x +b<sub>1</sub>y + c<sub>1</sub> = 0 and a<sub>2</sub>x + b<sub>2</sub>y ...

If the lines a1x +b1y + c1 = 0 and a2x + b2y + c2 = 0 cut the co-ordinate axes in concyclic points, then-

A

a1b1 = a2b2

B

a1a2=b1b2\frac { a _ { 1 } } { a _ { 2 } } = \frac { b _ { 1 } } { b _ { 2 } }

C

a1 + a2 = b1 + b2

D

a1a2 = b1b2

Answer

a1a2 = b1b2

Explanation

Solution

Let the given lines be L1 ŗ a1x + b1y + c1 = 0 and L2 ŗ a2x + b2y + c2 = 0, suppose L1 meets the co-ordinates axes at A and B and L2 meets at C & D. Then co-ordinates of A,B,C,D are

A (c1a1,0)\left( - \frac { c _ { 1 } } { a _ { 1 } } , 0 \right) , B (0,c1 b1)\left( 0 , - \frac { \mathrm { c } _ { 1 } } { \mathrm {~b} _ { 1 } } \right) , C

and D

Since A, B, C, D are concyclic, therefore

OA . OC = OD . OB

Ž (c1a1)\left( - \frac { c _ { 1 } } { a _ { 1 } } \right) (c2a2)\left( - \frac { c _ { 2 } } { a _ { 2 } } \right) = (c2b2)\left( - \frac { c _ { 2 } } { b _ { 2 } } \right) (c1b1)\left( - \frac { c _ { 1 } } { b _ { 1 } } \right)

Ž a1a2 = b1b2 .