Solveeit Logo

Question

Mathematics Question on circle

If the lines 2x3y=52x - 3y = 5 and 3x4y=73x - 4y = 7 are two diameters of a circle of radius 77, then the equation of the circle is

A

x2+y2+2x4y47=0 x^2 + y^2 + 2x - 4y - 47 = 0

B

x2+y2=49x^2 + y^2 = 49

C

x2+y22x+2y47=0x^2 + y^2 -2x + 2y -47 = 0

D

x2+y2=17x^2 + y^2 = 17

Answer

x2+y22x+2y47=0x^2 + y^2 -2x + 2y -47 = 0

Explanation

Solution

Let (x0,y0)\left( x _{0}, y _{0}\right) be the center of the circle
Intersection of any 22 diameter gives us the center.
x=5+3y2x =\frac{5+3 y }{2} substituting this in
3x4y=73 x-4 y=7
35+3y24y=73 \frac{5+3 y}{2}-4 y=7
y+1=0\Rightarrow y+1=0
y=1\Rightarrow y=-1
x0=5+3(1)2=1x_{0}=\frac{5+3(-1)}{2}=1
Equation of circle will be
(xx0)2+(yy0)2=r2\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}
(x1)2+(y+1)2=72(x-1)^{2}+(y+1)^{2}=7^{2}
x2+y22x+2y47=0\Rightarrow x^{2}+y^{2}-2 x+2 y-47=0