Solveeit Logo

Question

Question: If the line y = \(\sqrt{3}\)x cuts the curve x<sup>3</sup> + y<sup>3</sup> + 3xy + 5x<sup>2</sup> + ...

If the line y = 3\sqrt{3}x cuts the curve x3 + y3 + 3xy + 5x2 + 3y2 + 4x + 5y – 1 = 0 at the points A, B, C, then OA · OB · OC is equal to–

A

413\frac{4}{13} (33\sqrt{3} – 1)

B

433+1\frac{4}{3\sqrt{3} + 1}

C

2 +13\frac{1}{\sqrt{3}}

D

333\sqrt{3}+12\frac{1}{2}

Answer

413\frac{4}{13} (33\sqrt{3} – 1)

Explanation

Solution

The abscissa of the intersection points of the given line and the given curve is given by the equation

(33\sqrt{3} + 1)x3 + (33\sqrt{3} + 14)x2 + (53\sqrt{3} + 4) x – 1 = 0

If x1, x2, x3 be the roots of the above equation, then

A ŗ (x1,3\sqrt{3}x1), B ŗ (x2, 3\sqrt{3}x2) and C ŗ (x3, 3\sqrt{3}x3)

Hence, we have

OA · OB · OC = 2x1 · 2x2 · 2x3 = 8x1x2x3

= 8 × 133+1\frac{1}{3\sqrt{3} + 1}

= 8 × 33126\frac{3\sqrt{3} - 1}{26} = 413\frac{4}{13} (33\sqrt{3} – 1).