Solveeit Logo

Question

Question: If the line y = mx bisects the area enclosed by the lines x = 0, y = 0 x = \(\frac{3}{2}\) and the c...

If the line y = mx bisects the area enclosed by the lines x = 0, y = 0 x = 32\frac{3}{2} and the curve y = 1 + 4x – x2. Then the value of m is equal to-

A

136\frac{13}{6}

B

156\frac{15}{6}

C

132\frac{13}{2}

D

144\frac{14}{4}

Answer

136\frac{13}{6}

Explanation

Solution

We have, y = 1 + 4x – x2

Ž x2 – 4x = –y + 1

Ž (x – 2)2 = – (y – 5)

This equation represents a parabola having vertex at (2, 5) and opens downward. The area enclosed by this parabola and the line x = 0, y = 0, x = 32\frac { 3 } { 2 } is shaded figure.

Since y = mx bisects the area of the shaded region. Therefore,

Area of the region ODBAO = 2 Area of the region ODEO

Ž 03/2\int _ { 0 } ^ { 3 / 2 } (1 + 4x – x2) dx = 2 03/2mx\int _ { 0 } ^ { 3 / 2 } \mathrm { mx } dx

Ž [x+2x2x33]03/2\left[ x + 2 x ^ { 2 } - \frac { x ^ { 3 } } { 3 } \right] _ { 0 } ^ { 3 / 2 } = 2m [x22]03/2\left[ \frac { x ^ { 2 } } { 2 } \right] _ { 0 } ^ { 3 / 2 }

Ž 32\frac { 3 } { 2 } + 98\frac { 9 } { 8 } = m × 94\frac { 9 } { 4 } Ž 398\frac { 39 } { 8 } = Ž m =136\frac { 13 } { 6 }.

Hence (1) is the correct answer.