Solveeit Logo

Question

Question: If the line x = y = z intersect the line sinA. x + sinB.y + sinC.z = 2d<sup>2</sup>, sin2A.x + sin ...

If the line x = y = z intersect the line

sinA. x + sinB.y + sinC.z = 2d2, sin2A.x + sin 2B.y + sin2C.z = d2, then sin . sin . sin is equal to

(where A, B, C are the angles of a triangle) –

A

116\frac { 1 } { 16 }

B

18\frac { 1 } { 8 }

C

132\frac { 1 } { 32 }

D

112\frac { 1 } { 12 }

Answer

116\frac { 1 } { 16 }

Explanation

Solution

Let the point of intersection be (l,l,l)

\ sinA + sinB + sin C = 2 (sin2A + sin 2B + sin2C)

\ 4cos cos cos = 8 sin A sin B sin C

\ sin sin sin C2\frac { \mathrm { C } } { 2 } = 116\frac { 1 } { 16 }.