Solveeit Logo

Question

Mathematics Question on Hyperbola

If the line x – 1 = 0 is a directrix of the hyperbola kx2 – y2 = 6, then the hyperbola passes through the point

A

(25,6)(-2\sqrt5,6)

B

(5,3)(-\sqrt5,3)

C

(5,2)(\sqrt5,-2)

D

(25,36)(2\sqrt5,3\sqrt6)

Answer

(5,2)(\sqrt5,-2)

Explanation

Solution

Given hyperbola : x26/ky26=1\frac{x^2}{6/k}-\frac{y^2}{6} = 1
e=1+66/k=1+ke = \sqrt{1+\frac{6}{6/k}}=\sqrt{1+k}
x=±aex=±6kk+1x = ± \frac{a}{e} ⇒ x = ± \frac{\sqrt6}{\sqrt{k}\sqrt{k+1}}
As given : 6kk+1=1\frac{\sqrt6}{\sqrt{k}\sqrt{k+1}}=1
k=2⇒ k = 2
x23y26=1⇒ \frac{x^2}{3}-\frac{y^2}{6} = 1
Hence, the option that satisfies and is the correct option is (C):(5,2) (\sqrt{5},-2)