Solveeit Logo

Question

Question: If the line segment joining the points A (a, b) and B (c, d) subtends an angle \[\theta \] at the or...

If the line segment joining the points A (a, b) and B (c, d) subtends an angle θ\theta at the origin, then cosθ\cos \theta is equal to:
(a) acbc(a2+b2)(c2+d2)\dfrac{ac-bc}{\sqrt{\left( {{a}^{2}}+{{b}^{2}} \right)\left( {{c}^{2}}+{{d}^{2}} \right)}}
(b) ac+bd(a2+b2)(c2+d2)\dfrac{ac+bd}{\sqrt{\left( {{a}^{2}}+{{b}^{2}} \right)\left( {{c}^{2}}+{{d}^{2}} \right)}}
(c) ac+cd(a2+b2)(c2+d2)\dfrac{ac+cd}{\sqrt{\left( {{a}^{2}}+{{b}^{2}} \right)\left( {{c}^{2}}+{{d}^{2}} \right)}}
(d) None of these

Explanation

Solution

Hint: In this question, we will first visualize the given situation and then we will try to apply the trigonometric formula, that is cos(αβ)=cosαcosβ+sinαsinβ\cos \left( \alpha -\beta \right)=\cos \alpha \cos \beta +\sin \alpha \sin \beta . Also, we should know that cosα=basehypotenuse\cos \alpha =\dfrac{\text{base}}{\text{hypotenuse}} and sinα=perpendicularhypotenuse\sin \alpha =\dfrac{\text{perpendicular}}{\text{hypotenuse}}.

Complete step-by-step answer:
In this question, we have to find the value of cosθ\cos \theta where θ\theta is the angle subtended by the line joining A (a, b) and B (c, d) at the origin. Here, we can represent the given situation as,

We have been given that the coordinates of A and B are (a, b) and (c, d) respectively. So, we can write the coordinates of A’ and B’ as (a, 0) and (c, 0) on the x and y axis. Let us consider AOA\angle AOA' as α\alpha and BOB\angle BOB' as β\beta . So, we can write,
θ=αβ....(i)\theta =\alpha -\beta ....\left( i \right)
So, from the figure, we can say that
cosα=OAOA\cos \alpha =\dfrac{OA'}{OA}
cosβ=OBOB\cos \beta =\dfrac{OB'}{OB}
By using the distance formula, that is (x2x1)2+(y2y1)2\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}, we will find the value of OA’, OA, OB’ and OB. So, we get,
OA=(a0)2+(00)2=aOA'=\sqrt{{{\left( a-0 \right)}^{2}}+{{\left( 0-0 \right)}^{2}}}=a
OB=(c0)2+(00)2=cOB'=\sqrt{{{\left( c-0 \right)}^{2}}+{{\left( 0-0 \right)}^{2}}}=c
OA=(a0)2+(b0)2=a2+b2OA=\sqrt{{{\left( a-0 \right)}^{2}}+{{\left( b-0 \right)}^{2}}}=\sqrt{{{a}^{2}}+{{b}^{2}}}
OB=(c0)2+(d0)2=c2+d2OB=\sqrt{{{\left( c-0 \right)}^{2}}+{{\left( d-0 \right)}^{2}}}=\sqrt{{{c}^{2}}+{{d}^{2}}}
AA=(aa)2+(b0)2=bAA'=\sqrt{{{\left( a-a \right)}^{2}}+{{\left( b-0 \right)}^{2}}}=b
BB=(cc)2+(d0)2=dBB'=\sqrt{{{\left( c-c \right)}^{2}}+{{\left( d-0 \right)}^{2}}}=d
So, we get,
cosα=aa2+b2\cos \alpha =\dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}}}
cosβ=cc2+d2\cos \beta =\dfrac{c}{\sqrt{{{c}^{2}}+{{d}^{2}}}}
And, we know that
sinα=AAOA\sin \alpha =\dfrac{AA'}{OA} and sinβ=BBOB\sin \beta =\dfrac{BB'}{OB}
sinα=ba2+b2\sin \alpha =\dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}}} and sinβ=da2+b2\sin \beta =\dfrac{d}{\sqrt{{{a}^{2}}+{{b}^{2}}}}
And we know that θ=αβ\theta =\alpha -\beta . So, we will take cosine ratios to both sides.
cosθ=cos(αβ)\cos \theta =\cos \left( \alpha -\beta \right)
Now, we know that,
cos(αβ)=cosαcosβ+sinαsinβ\cos \left( \alpha -\beta \right)=\cos \alpha \cos \beta +\sin \alpha \sin \beta
So, we get,
cosθ=cosαcosβ+sinαsinβ\cos \theta =\cos \alpha \cos \beta +\sin \alpha \sin \beta
Now, we will put the values of cosα\cos \alpha , cosβ\cos \beta , sinα\sin \alpha and sinβ\sin \beta in the above equation. So, we will get,
cosθ=aa2+b2×cc2+d2+ba2+b2×dc2+d2\cos \theta =\dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\times \dfrac{c}{\sqrt{{{c}^{2}}+{{d}^{2}}}}+\dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\times \dfrac{d}{\sqrt{{{c}^{2}}+{{d}^{2}}}}
cosθ=ac+bda2+b2c2+d2\cos \theta =\dfrac{ac+bd}{\sqrt{{{a}^{2}}+{{b}^{2}}}\sqrt{{{c}^{2}}+{{d}^{2}}}}
Hence, option (b) is the right answer.

Note: In this question, it is necessary to visualize the condition by drawing the figure because visualization from the virtual figure won’t help. Also, we may make a mistake at the point where we found that θ=αβ\theta =\alpha -\beta . Also, considering the correct angles will only give the correct answer.