Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

If the line segment joining the points (5,2)(5, 2) and (2,a)(2, a) subtends an angle π4\frac{\pi}{4} at the origin, then the absolute value of the product of all possible values of aa is:

A

6

B

8

C

2

D

4

Answer

4

Explanation

Solution

Consider the points A(5,2)A(5, 2) and B(2,a)B(2, a) joined by line segments from the origin OO. The given condition states that these segments subtend an angle π4\frac{\pi}{4} at the origin. Let the slopes of the lines OAOA and OBOB be MOAM_{OA} and MOBM_{OB} respectively.

The slope of line OAOA is: MOA=25.M_{OA} = \frac{2}{5}.

The slope of line OBOB is: MOB=a2.M_{OB} = \frac{a}{2}.

Since the angle between the lines is π4\frac{\pi}{4},

we use the formula: tan(π4)=MOBMOA1+MOAMOB.\tan \left( \frac{\pi}{4} \right) = \left| \frac{M_{OB} - M_{OA}}{1 + M_{OA} \cdot M_{OB}} \right|.

Given tan(π4)=1\tan \left( \frac{\pi}{4} \right) = 1,

we have: 1=a2251+25a2.1 = \left| \frac{\frac{a}{2} - \frac{2}{5}}{1 + \frac{2}{5} \cdot \frac{a}{2}} \right|.

Simplifying the expression: 5a410+2a=1.\left| \frac{5a - 4}{10 + 2a} \right| = 1.

Clearing the fractions: 5a410+2a=1.\left| \frac{5a - 4}{10 + 2a} \right| = 1.

This gives two cases: 5a410+2a=1or5a410+2a=1.\frac{5a - 4}{10 + 2a} = 1 \quad \text{or} \quad \frac{5a - 4}{10 + 2a} = -1.

Case 1: 5a410+2a=1.\frac{5a - 4}{10 + 2a} = 1.

Cross-multiplying: 5a4=10+2a.5a - 4 = 10 + 2a.

Rearranging terms: 3a=14    a=143.3a = 14 \implies a = \frac{14}{3}.

Case 2: 5a410+2a=1.\frac{5a - 4}{10 + 2a} = -1.

Cross-multiplying: 5a4=102a.5a - 4 = -10 - 2a.

Rearranging terms: 7a=6    a=67.7a = -6 \implies a = -\frac{6}{7}.

The product of all possible values of aa is: a1×a2=(143)×(67)=4.a_1 \times a_2 = \left( \frac{14}{3} \right) \times \left( -\frac{6}{7} \right) = -4.

The absolute value of the product is: a1×a2=4.|a_1 \times a_2| = 4.

Therefore: 4.4.