Solveeit Logo

Question

Question: If the line \(lx + my + n = 0\) passes through the extremities of a pair of conjugate diameters of t...

If the line lx+my+n=0lx + my + n = 0 passes through the extremities of a pair of conjugate diameters of the hyperbola x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 then

A

a2l2b2m2=0a^{2}l^{2} - b^{2}m^{2} = 0

B

a2l2+b2m2=0a^{2}l^{2} + b^{2}m^{2} = 0

C

a2l2+b2m2=n2a^{2}l^{2} + b^{2}m^{2} = n^{2}

D

None of these

Answer

a2l2b2m2=0a^{2}l^{2} - b^{2}m^{2} = 0

Explanation

Solution

The extremities of a pair of conjugate diameters of x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 are (asecφ,btanφ)(a\sec\varphi,b\tan\varphi) and (atanφ,bsecφ)(a\tan\varphi,b\sec\varphi) respectively.

According to the question, since extremities of a pair of conjugate diameters lie on lx+my+n=0lx + my + n = 0

\therefore l(asecφ)+m(btanφ)+n=0l(a\sec\varphi) + m(b\tan\varphi) + n = 0l(atanφ)+m(bsecφ)+n=0l(a\tan\varphi) + m(b\sec\varphi) + n = 0……(i)

Then from (i), alsecφ+bmtanφ=nal\sec\varphi + bm\tan\varphi = - n or

a2l2sec2φ+b2m2tan2φ+2ablmsecφtanφ=n2a^{2}l^{2}\sec^{2}\varphi + b^{2}m^{2}\tan^{2}\varphi + 2ablm\sec\varphi\tan\varphi = n^{2} ……(ii)

And from (ii), altanφ+bmsecφ=nal\tan\varphi + bm\sec\varphi = - n or

a2l2tan2φ+b2m2sec2φ+2ablmsecφtanφ=n2a^{2}l^{2}\tan^{2}\varphi + b^{2}m^{2}\sec^{2}\varphi + 2ablm\sec\varphi\tan\varphi = n^{2}……(iii)

Then subtracting (ii) from (iii)

\therefore a2l2(sec2φtan2φ)+b2m2(tan2φsec2φ)=0a^{2}l^{2}(\sec^{2}\varphi - \tan^{2}\varphi) + b^{2}m^{2}(\tan^{2}\varphi - \sec^{2}\varphi) = 0 or

a2l2b2m2=0a^{2}l^{2} - b^{2}m^{2} = 0