Question
Question: If the line \(lx + my + n = 0\) passes through the extremities of a pair of conjugate diameters of t...
If the line lx+my+n=0 passes through the extremities of a pair of conjugate diameters of the hyperbola a2x2−b2y2=1 then
A
a2l2−b2m2=0
B
a2l2+b2m2=0
C
a2l2+b2m2=n2
D
None of these
Answer
a2l2−b2m2=0
Explanation
Solution
The extremities of a pair of conjugate diameters of a2x2−b2y2=1 are (asecφ,btanφ) and (atanφ,bsecφ) respectively.
According to the question, since extremities of a pair of conjugate diameters lie on lx+my+n=0
∴ l(asecφ)+m(btanφ)+n=0 ⇒ l(atanφ)+m(bsecφ)+n=0……(i)
Then from (i), alsecφ+bmtanφ=−n or
a2l2sec2φ+b2m2tan2φ+2ablmsecφtanφ=n2 ……(ii)
And from (ii), altanφ+bmsecφ=−n or
a2l2tan2φ+b2m2sec2φ+2ablmsecφtanφ=n2……(iii)
Then subtracting (ii) from (iii)
∴ a2l2(sec2φ−tan2φ)+b2m2(tan2φ−sec2φ)=0 or
a2l2−b2m2=0