Solveeit Logo

Question

Question: If the line \[lx+my+n=0\] is a normal to the hyperbola \(\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2...

If the line lx+my+n=0lx+my+n=0 is a normal to the hyperbola x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1, then show that a2l2b2m2=(a2+b2n)2\dfrac{{{a}^{2}}}{{{l}^{2}}}-\dfrac{{{b}^{2}}}{{{m}^{2}}}={{\left( \dfrac{{{a}^{2}}+{{b}^{2}}}{n} \right)}^{2}}?

Explanation

Solution

We start solving the problem by using the fact that the parametric equation of the normal of the hyperbola x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 is axsecθ+bytanθ=a2+b2\dfrac{ax}{\sec \theta }+\dfrac{by}{\tan \theta }={{a}^{2}}+{{b}^{2}} and rearrange the terms in it to get the equation in the form of px+qy+r=0px+qy+r=0. We then compare the coefficients of x, y and constant terms of the obtained equation of normal with lx+my+n=0lx+my+n=0 to find the values of l, m and n. We then assume a2l2b2m2\dfrac{{{a}^{2}}}{{{l}^{2}}}-\dfrac{{{b}^{2}}}{{{m}^{2}}} and substitute the values of l and m and make necessary calculations to get the required result.

Complete step by step answer:
According to the problem, we are given that the line lx+my+n=0lx+my+n=0 is a normal to the hyperbola x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1. We need to show that a2l2b2m2=(a2+b2n)2\dfrac{{{a}^{2}}}{{{l}^{2}}}-\dfrac{{{b}^{2}}}{{{m}^{2}}}={{\left( \dfrac{{{a}^{2}}+{{b}^{2}}}{n} \right)}^{2}}.

We know that the parametric equation of the normal of the hyperbola x2a2y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 is axsecθ+bytanθ=a2+b2\dfrac{ax}{\sec \theta }+\dfrac{by}{\tan \theta }={{a}^{2}}+{{b}^{2}}. Let us rewrite this equation in the form of px+qy+r=0px+qy+r=0.
So, we get the equation of the normal as axsecθ+bytanθ(a2+b2)=0\dfrac{ax}{\sec \theta }+\dfrac{by}{\tan \theta }-\left( {{a}^{2}}+{{b}^{2}} \right)=0---(1).
According to the problem, we are given that lx+my+n=0lx+my+n=0 is normal to the hyperbola. So, let us compare this equation with equation (1).
So, we get l=asecθl=\dfrac{a}{\sec \theta }, m=btanθm=\dfrac{b}{\tan \theta } and n=(a2+b2)n=-\left( {{a}^{2}}+{{b}^{2}} \right) ---(2).
Let us consider a2l2b2m2\dfrac{{{a}^{2}}}{{{l}^{2}}}-\dfrac{{{b}^{2}}}{{{m}^{2}}}. Let us substitute the results obtained from equation (2) in this.
a2l2b2m2=a2(asecθ)2b2(btanθ)2\Rightarrow \dfrac{{{a}^{2}}}{{{l}^{2}}}-\dfrac{{{b}^{2}}}{{{m}^{2}}}=\dfrac{{{a}^{2}}}{{{\left( \dfrac{a}{\sec \theta } \right)}^{2}}}-\dfrac{{{b}^{2}}}{{{\left( \dfrac{b}{\tan \theta } \right)}^{2}}}.
a2l2b2m2=a2a2sec2θb2b2tan2θ\Rightarrow \dfrac{{{a}^{2}}}{{{l}^{2}}}-\dfrac{{{b}^{2}}}{{{m}^{2}}}=\dfrac{{{a}^{2}}}{\dfrac{{{a}^{2}}}{{{\sec }^{2}}\theta }}-\dfrac{{{b}^{2}}}{\dfrac{{{b}^{2}}}{{{\tan }^{2}}\theta }}.
a2l2b2m2=sec2θtan2θ\Rightarrow \dfrac{{{a}^{2}}}{{{l}^{2}}}-\dfrac{{{b}^{2}}}{{{m}^{2}}}={{\sec }^{2}}\theta -{{\tan }^{2}}\theta .
We know that sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1.
a2l2b2m2=1\Rightarrow \dfrac{{{a}^{2}}}{{{l}^{2}}}-\dfrac{{{b}^{2}}}{{{m}^{2}}}=1 ---(3).
We know that (1)2=1{{\left( -1 \right)}^{2}}=1. Let us use this in equation (2).
a2l2b2m2=(1)2\Rightarrow \dfrac{{{a}^{2}}}{{{l}^{2}}}-\dfrac{{{b}^{2}}}{{{m}^{2}}}={{\left( -1 \right)}^{2}}.
a2l2b2m2=(a2+b2(a2+b2))2\Rightarrow \dfrac{{{a}^{2}}}{{{l}^{2}}}-\dfrac{{{b}^{2}}}{{{m}^{2}}}={{\left( \dfrac{{{a}^{2}}+{{b}^{2}}}{-\left( {{a}^{2}}+{{b}^{2}} \right)} \right)}^{2}}.
From equation (2), we get
a2l2b2m2=(a2+b2n)2\Rightarrow \dfrac{{{a}^{2}}}{{{l}^{2}}}-\dfrac{{{b}^{2}}}{{{m}^{2}}}={{\left( \dfrac{{{a}^{2}}+{{b}^{2}}}{n} \right)}^{2}}.
So, we have proved a2l2b2m2=(a2+b2n)2\dfrac{{{a}^{2}}}{{{l}^{2}}}-\dfrac{{{b}^{2}}}{{{m}^{2}}}={{\left( \dfrac{{{a}^{2}}+{{b}^{2}}}{n} \right)}^{2}}.

Note: We can also find the slope of the normal first by using the facts that the point on hyperbola is of form (asecθ,btanθ)\left( a\sec \theta ,b\tan \theta \right) and slope of the tangent by using dydx(asecθ,btanθ){{\left. \dfrac{dy}{dx} \right|}_{\left( a\sec \theta ,b\tan \theta \right)}}. We should not make calculation mistakes while solving this problem. We can also use the fact that if two lines a1x+b1y+c1=0{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0 and a2x+b2y+c2=0{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0 are identical to each other, then a1a2=b1b2=c1c2\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}} to solve the problem.