Solveeit Logo

Question

Mathematics Question on Ellipse

If the line joining the points A(α)A(\alpha) and B(β)B(\beta) on the ellipse x225+y29=1\frac{x^2}{25} + \frac{y^2}{9} = 1 is a focal chord, then one possible values of cotα2.cotβ2\cot \frac{\alpha}{2} . \cot \frac{\beta}{2} is

A

-3

B

3

C

-9

D

9

Answer

-9

Explanation

Solution

Since equation of chord joining the points
A(α)A(\alpha) and B(β)B(\beta) on the ellipse
x225+y29=1\frac{x^{2}}{25}+\frac{y^{2}}{9}=1 is
x5cosα+β2+y3sinα+β2\frac{x}{5} \cos \frac{\alpha+\beta}{2}+\frac{y}{3} \sin \frac{\alpha+\beta}{2}
=cosαβ2=\cos \frac{\alpha-\beta}{2} ...(i)
\because Chord (i) is the focal chord so, it will pass through focus (4,0)(4,0)
45cosα+β2=cosαβ2\frac{4}{5} \cos \frac{\alpha+\beta}{2}=\cos \frac{\alpha-\beta}{2}
4(cosα2cosβ2sinα2sinβ2)\Rightarrow 4\left(\cos \frac{\alpha}{2} \cos \frac{\beta}{2}-\sin \frac{\alpha}{2} \sin \frac{\beta}{2}\right)
=5(cosα2cosβ2+sinα2sinβ2)=5\left(\cos \frac{\alpha}{2} \cos \frac{\beta}{2}+\sin \frac{\alpha}{2} \sin \frac{\beta}{2}\right)
4(cotα2cotβ21)\Rightarrow 4\left(\cot \frac{\alpha}{2} \cot \frac{\beta}{2}-1\right)
=5(cotα2cotβ2+1)=5\left(\cot \frac{\alpha}{2} \cot \frac{\beta}{2}+1\right)
cotα2cotβ2=9\Rightarrow \cot \frac{\alpha}{2} \cot \frac{\beta}{2}=-9