Solveeit Logo

Question

Question: If the line \(y = m x + c\)be a tangent to the circle \(x ^ { 2 } + y ^ { 2 } = a ^ { 2 }\) , then ...

If the line y=mx+cy = m x + cbe a tangent to the circle x2+y2=a2x ^ { 2 } + y ^ { 2 } = a ^ { 2 } , then the point of contact is.

A

(a2c,a2)\left( \frac { - a ^ { 2 } } { c } , a ^ { 2 } \right)

B

(a2c,a2mc)\left( \frac { a ^ { 2 } } { c } , \frac { - a ^ { 2 } m } { c } \right)

C

(a2mc,a2c)\left( \frac { - a ^ { 2 } m } { c } , \frac { a ^ { 2 } } { c } \right)

D

(a2cm,a2m)\left( \frac { - a ^ { 2 } c } { m } , \frac { a ^ { 2 } } { m } \right)

Answer

(a2mc,a2c)\left( \frac { - a ^ { 2 } m } { c } , \frac { a ^ { 2 } } { c } \right)

Explanation

Solution

Find points of intersection by simultaneously

solving for x and y from y=mx+cy = m x + c and x2+y2=a2x ^ { 2 } + y ^ { 2 } = a ^ { 2 }

which comes out as (a2mc,a2c)\left( - \frac { a ^ { 2 } m } { c } , \frac { a ^ { 2 } } { c } \right).