Solveeit Logo

Question

Mathematics Question on 3D Geometry

If the line 2x3=3y24λ+1=4z\frac{2 - x}{3} = \frac{3y - 2}{4\lambda + 1} = 4 - z makes a right angle with the line x+33μ=12y6=5z7,\frac{x + 3}{3\mu} = \frac{1 - 2y}{6} = \frac{5 - z}{7}, then 4λ+9μ4\lambda + 9\mu is equal to:

A

13

B

4

C

5

D

6

Answer

6

Explanation

Solution

Given:

\frac{2 - x}{3} = \frac{3y - 2}{4\lambda + 1} = 4 - z \tag{1}

From equation (1), we have:

x23=y23=z41\frac{x - 2}{-3} = \frac{y - 2}{3} = \frac{z - 4}{-1}

Now consider the second line:

\frac{x + 3}{3\mu} = \frac{1 - 2y}{6} = \frac{5 - z}{7} \tag{2}

From equation (2), we have:

x+33μ=y123=z57\frac{x + 3}{3\mu} = \frac{y - \frac{1}{2}}{-3} = \frac{z - 5}{-7}

Since the lines are perpendicular, their direction ratios should satisfy:

(3)(3μ)+(4λ+1)(1)+(1)(7)=0(-3)(3\mu) + (4\lambda + 1)(-1) + (-1)(-7) = 0

Expanding this:

9μ4λ1+7=0-9\mu - 4\lambda - 1 + 7 = 0 4λ+9μ=64\lambda + 9\mu = 6