Solveeit Logo

Question

Question: If the line ax + by = 1 passes through point of intersection of y = x tana + p seca, y sin(30<sup>0<...

If the line ax + by = 1 passes through point of intersection of y = x tana + p seca, y sin(300 – a) – x cos(300 – a) = p and is inclined at 300 with y = tanax, then the value of a2 + b2 can be-

A

1p2\frac{1}{p^{2}}

B

2p2\frac{2}{p^{2}}

C

32p2\frac{3}{2p^{2}}

D

34p2\frac{3}{4p^{2}}

Answer

34p2\frac{3}{4p^{2}}

Explanation

Solution

Given, y cosa – x sina = p

and ysin(300 – a) – x cos(300 – a) = p

are inclined at 600 so line ax + by = 1 can be acute angle bisector ....(i)

i.e., y cosa – x sina – p

= –(ysin(300 – a) – xcos(300 – a) – p)

Ю y[cosa+sin(300–a)]

–x[sina + cos(300–a)] = 2p ....(ii)

From Eqs.(i) and (ii), we get

bcosα+sin(30ºα)\frac{b}{\cos\alpha + \sin(30º - \alpha)} = a(sinα+cos(30ºα))\frac{a}{(\sin\alpha + \cos(30º - \alpha))} = 12p\frac{1}{2p}

Ю a2+b22+1\frac{\sqrt{a^{2} + b^{2}}}{\sqrt{2 + 1}} = 12p\frac{1}{2p}

Ю a2 + b2 = 34p2\frac{3}{4p^{2}}