Solveeit Logo

Question

Mathematics Question on Conic sections

If the line 3x4y+5=03x - 4y + 5 = 0 is a tangent to the parabola y2=4ax,y^2 = 4ax, then aa is equal to

A

1516\frac{15}{16}

B

54\frac{5}{4}

C

43-\frac{4}{3}

D

54-\frac{5}{4}

Answer

1516\frac{15}{16}

Explanation

Solution

The given line is y=34x+54=mx+cy= \frac{3}{4}x+\frac{5}{4} = mx +c where m=34,cm=\frac{3}{4}, c =54= \frac{5}{4} y=mx+cy= mx+c touches y2=4axy^{2}= 4ax if c=amc= \frac{a}{m} \therefore the given line touches y2=4axy^{2}= 4ax if 54=a3/4\frac{5}{4}= \frac{a}{{3}/{4}} a=54×34 \Rightarrow a=\frac{5}{4}\times\frac{3}{4} =1516 = \frac{15}{16}