Solveeit Logo

Question

Mathematics Question on Conic sections

If the line 2x+6y=22x+\sqrt6y=2 touches the hyperbola x22y2=4x^2-2y^2=4, then the point of contact is

A

(2,6)(-2,\sqrt6)

B

(5,26)(-5,2\sqrt6)

C

(12,16)\Bigg(\frac{1}{2},\frac{1}{\sqrt6}\Bigg)

D

(4,6)(4,-\sqrt6)

Answer

(4,6)(4,-\sqrt6)

Explanation

Solution

The equation of tangent at (x1,y1)(x_1,y_1) is xx12yy1=4xx_1-2yy_1=4,which is same as 2x+6y=2.2x+\sqrt6y=2.
x12=2y16=42\therefore\, \, \, \, \, \, \, \, \frac{x_1}{2}=-\frac{2y_1}{\sqrt6}=\frac{4}{2}
x1=4\Rightarrow\, \, \, \, \, \, \, \, \, x_1=4 and y1=6y_1=-\sqrt6
Thus, the point of contact is (4,6)(4,-\sqrt6).