Solveeit Logo

Question

Mathematics Question on Application of derivatives

If the length of three sides of a trapezium other than base are equal to 10cm10 \,cm, then find the area of trapezium when it is maximum.

A

753/2cm275\sqrt{3}/2\, cm^{2}

B

753cm275\sqrt{3}\, cm^{2}

C

903cm290\sqrt{3}\, cm^{2}

D

48cm248\, cm^2

Answer

753cm275\sqrt{3}\, cm^{2}

Explanation

Solution

Let ABCDABCD be the given trapezium such that AD=DC=BC=10cmAD = DC = BC = 10 \,cm. Draw DPDP and CQCQ perpendiculars from DD and CC respectively on ABAB. Clearly, ΔAPD?Let\Delta APD ? Let AP = x ,cm.Then,. Then, BQ = x, cm.ByapplyingPythagorasTheoremin. By applying Pythagoras Theorem in \Delta APDandand\Delta BQC,wehave, we have DP = QC = \sqrt{100-x^{2}}LetLetAbetheareaoftrapeziumbe the area of trapeziumABCD.Then,. Then, A = \frac{1}{2}\left(10+10+2x\right)\times \sqrt{100-x^{2}} \Rightarrow A = \left(10+x\right)\sqrt{100-x^{2}} \Rightarrow \frac{dA}{dx} = \sqrt{100-x^{2}} - \frac{x\left(10+x\right)}{\sqrt{100-x^{2}}} = \frac{100-10x-2x^{2}}{\sqrt{100-x^{2}}}FormaximumorminimumvaluesofFor maximum or minimum values ofA,wemusthave, we must have \frac{dA}{dx} = 0![](https://images.collegedunia.com/public/qa/images/content/20220706/C3A5CUsers458279d71657086202196.png)![](https://images.collegedunia.com/public/qa/images/content/2022_07_06/C3A5CUsers_458279d71657086202196.png)\Rightarrow \frac{100-10x-2x^{2}}{\sqrt{100-x^{2}}} = 0 \Rightarrow 100 - 10x-2x^{2} = 0 \Rightarrow x^{2} + 5x - 50 = 0 \Rightarrow \left(x + 10\right)\left(x - 5\right) = 0 \Rightarrow x = 5 \left[\because x > 0 \therefore x + 10 \ne 0\right]Now,Now,\frac{d^{2}A}{dx^{2}} = \frac{\sqrt{100-x^{2}}\left(-10-4x\right)+\frac{\left(100-10x-2x^{2}\right)x}{\sqrt{100-x^{2}}}}{100-x^{2}} \Rightarrow \frac{d^{2}A}{dx^{2}} = \frac{2x^{3} - 300x -1000}{\left(100-x^{2}\right)^{3/2}} \Rightarrow \left(\frac{d^{2}A}{dx^{2}}\right)_{x = 5} < 0Thus,theareaofthetrapeziumismaximumwhenThus, the area of the trapezium is maximum whenx = 5.Themaximumareaisgivenby. The maximum area is given by A = \left(10 + 5\right)\sqrt{100-25} =75\sqrt{3},cm^{2}$.