Question
Mathematics Question on Application of derivatives
If the length of three sides of a trapezium other than base are equal to 10cm, then find the area of trapezium when it is maximum.
753/2cm2
753cm2
903cm2
48cm2
753cm2
Solution
Let ABCD be the given trapezium such that AD=DC=BC=10cm. Draw DP and CQ perpendiculars from D and C respectively on AB. Clearly, ΔAPD?LetAP = x ,cm.Then,BQ = x, cm.ByapplyingPythagorasTheoremin\Delta APDand\Delta BQC,wehaveDP = QC = \sqrt{100-x^{2}}LetAbetheareaoftrapeziumABCD.Then,A = \frac{1}{2}\left(10+10+2x\right)\times \sqrt{100-x^{2}}\Rightarrow A = \left(10+x\right)\sqrt{100-x^{2}}\Rightarrow \frac{dA}{dx} = \sqrt{100-x^{2}} - \frac{x\left(10+x\right)}{\sqrt{100-x^{2}}}= \frac{100-10x-2x^{2}}{\sqrt{100-x^{2}}}FormaximumorminimumvaluesofA,wemusthave\frac{dA}{dx} = 0\Rightarrow \frac{100-10x-2x^{2}}{\sqrt{100-x^{2}}} = 0\Rightarrow 100 - 10x-2x^{2} = 0\Rightarrow x^{2} + 5x - 50 = 0\Rightarrow \left(x + 10\right)\left(x - 5\right) = 0\Rightarrow x = 5 \left[\because x > 0 \therefore x + 10 \ne 0\right]Now,\frac{d^{2}A}{dx^{2}} = \frac{\sqrt{100-x^{2}}\left(-10-4x\right)+\frac{\left(100-10x-2x^{2}\right)x}{\sqrt{100-x^{2}}}}{100-x^{2}}\Rightarrow \frac{d^{2}A}{dx^{2}} = \frac{2x^{3} - 300x -1000}{\left(100-x^{2}\right)^{3/2}}\Rightarrow \left(\frac{d^{2}A}{dx^{2}}\right)_{x = 5} < 0Thus,theareaofthetrapeziumismaximumwhenx = 5.ThemaximumareaisgivenbyA = \left(10 + 5\right)\sqrt{100-25}=75\sqrt{3},cm^{2}$.