Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If the length of the perpendicular drawn from the point P(a, 4, 2), a> 0 on the line
x+12=y33=z11\frac{x+1}{2} = \frac{y-3}{3} = \frac{z-1}{1} is 262\sqrt6 units and Q(α1,α2,α3)Q(α1, α2, α3)
is the image of the point P in this line, then
α+i=13αi\alpha + \sum_{i=1}^{3} \alpha_i
is equal to :

A

7

B

8

C

12

D

14

Answer

8

Explanation

Solution

The correct answer is (B) : 8
∵ PR is perpendicular to given line, so

Fig.

2(2λ1α)+3(3λ1)1(λ1)=02(2λ-1-α)+3(3λ-1)-1(-λ-1)=0
α=7λ2⇒ α = 7λ-2
Now,
PR=26∵ PR = 2\sqrt6
(5λ+1)2+(3λ1)2+(λ+1)2=24⇒ (-5λ+1)^2 + (3λ-1)^2 + (λ+1)^2 = 24
5λ22λ3=0⇒ 5λ^2 - 2λ-3 = 0
λ=1 or35⇒ λ = 1\ or -\frac{3}{5}
α>0 soλ=1 andα=5∵ α>0\ so λ = 1\ and α = 5
Now i=13αi \sum_{i=1}^{3} \alpha_i = 2(Sum of co-ordinate of R)-(Sum of co-ordinates of P)
= 2(7)-11
= 3
a+i=13αi \sum_{i=1}^{3} \alpha_i= 5+3
= 8